1. (30 points, 5 each) **No partial credit.**
 a. Check for independence of:
 1) the collection of functions x, $x \ln x$, $x \ln x^2$;
 2) the collection of vectors
 \[
 \begin{pmatrix}
 1 \\
 2 \\
 3 \\
 4
 \end{pmatrix},
 \begin{pmatrix}
 8 \\
 7 \\
 6 \\
 5
 \end{pmatrix},
 \begin{pmatrix}
 13 \\
 8 \\
 3 \\
 -2
 \end{pmatrix},
 \begin{pmatrix}
 12 \\
 10 \\
 4 \\
 -1
 \end{pmatrix};
 \]
 b. Use the definition of the Laplace transform to compute $L[te^{-t}]$;
 c. Find $(D^2 + 2D + 1)[e^{2t} \sin t]$;
 d. Evaluate $e^t * t$;
 e. Find all solutions of the equation
 \[x' + x = x^2;\]
 f. Solve the initial value problem
 \[x' + x = x^2, \quad x(0) = \frac{1}{4}.\]

2. (6 points) Find the general solution of the non-homogeneous equation
 \[x' + x \tan t = \sin 2t.\]

3. (10 points) Consider the following initial value problem:
 \[x' = \sqrt{|x|}, \quad x(0) = 0.\]
 a. Is the existence and uniqueness theorem applicable?
 b. If it is not applicable, does the IVP have a solution?
 c. If a solution exists, is it unique? Explain.

Examination continues on other side
4. (8 points) Find the inverse Laplace transform of
 \[\frac{2s - 1}{s^2 - 4s + 8}; \]
 \[\frac{e^{-s}}{s^3 + 4s^2 + 4s}. \]

5. (8 points) Let the matrix
 \[A = \begin{pmatrix} 1 & 1 & 0 \\ -2 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} \]
 be given.

 a. \(A \) has an eigenvalue \(\lambda = 1 \). Find an eigenvector corresponding to this eigenvalue;

 b. The vector \(v = \begin{pmatrix} -1 \\ i \\ 1 \end{pmatrix} \) is an eigenvector of \(A \). Find the corresponding eigenvalue.

6. (10 points) Use the Laplace transform method to solve
 \[(D^3 - D)x = \begin{cases} 1, & \text{if } t < 2, \\ 0, & \text{if } t \geq 2, \end{cases} \quad x(0) = x'(0) = x''(0) = 0. \]

 No credit for any other method.

7. (10 points) Solve the system of differential equations
 \[D\vec{x} = \begin{pmatrix} 1 & -1 & -4 \\ 2 & -2 & -2 \\ 1 & 0 & -4 \end{pmatrix}\vec{x}. \]

8. (8 points) Solve the system of differential equations
 \[D\vec{x} = \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}\vec{x} + \begin{pmatrix} 2e^{-2t} \\ e^{-2t} \end{pmatrix}. \]

9. (10 points) Consider the system
 \[\frac{dx}{dt} = -y, \]
 \[\frac{dy}{dt} = x - 2y(1 + x^2). \]

 a. Show that \(E = x^2 + y^2 \) is a Lyapunov function for this system;

 b. Find equilibrium points;

 c. Classify each equilibrium;

 d. Find the linearized matrix for each equilibrium point;

 e. Draw the phase portrait of the linearization of each equilibrium;

 f. Determine whether the system has closed integral curves.