1. (3 points each, no partial credit) For each of the differential equations below determine the order, determine whether the differential equation is linear, and if so, whether it is homogeneous.

 a. \(t^4 \frac{d^3 x}{dt^3} + t \frac{dx}{dt} - x - t^7 = 0 \)

 b. \(x^8 \frac{dx}{dt} + \frac{d^7 x}{dt^7} = x + t^9 \)

 c. \(\left(\frac{dx}{dt} \right)^5 + \frac{d^4 x}{dt^4} - t^3 x^7 + t^7 = 0 \)

 d. \((x')^2 x'' = x^4 x'' + t^5 x' \)

2. (3 points each, no partial credit) Find all real values of \(\alpha \) for which the given function is a solution of the given differential equation.

 a. \(x = \alpha, \quad (D^7 + 3D^6 - 2tD^5 + \pi D^4 + D^3 - D^2 + D - 1)x = 7 \)

 b. \(x = t^\alpha, \quad t > 0, \quad 16t^2 x'' + 3x = 0 \)

 c. \(x = e^{\alpha t}, \quad x'\sqrt{x} = 2e^{3t} \)

3. (2 points each, no partial credit) For each of the following differential equations state whether it is normal on \(0 < t < 2 \).

 a. \((t - 1) \frac{dx}{dt} - 5x = 3t \)

 b. \(t \frac{dx}{dt} + e^t x = \sin t \)

4. (5 points, no partial credit) For the initial-value problem \(x' = x^2, \quad x(0) = -1 \) use 2 steps of Euler’s method to approximate \(x(1) \).

\[
\begin{pmatrix}
0 & 1 & 6 & 9 & 1 \\
0 & 0 & 2 & 7 & 0 \\
0 & 0 & 0 & 3 & 8 \\
0 & 0 & 0 & 0 & 4 \\
5 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

5. (5 points, no partial credit) Evaluate the determinant \(\det \begin{pmatrix}
0 & 1 & 6 & 9 & 1 \\
0 & 0 & 2 & 7 & 0 \\
0 & 0 & 0 & 3 & 8 \\
0 & 0 & 0 & 0 & 4 \\
5 & 0 & 0 & 0 & 0
\end{pmatrix} \).

6. (5 points, no partial credit) Compute the Wronskian of \(h_1(t) = \sin t \) and \(h_2(t) = t \cos t \) at \(t = 0 \).

Examination continues on next page
7. (10 points) Solve the initial-value problem \(\frac{dx}{dt} = -t^2, \quad x(0) = -5. \)

8. (15 points) Solve the initial-value problem \(\frac{dx}{dt} - tx = t, \quad x(0) = \frac{1}{2}. \)

9. (5 points) Consider the functions \(t^5 \) and \(|t^5| \) on \(-\infty < t < \infty\). Are they linearly independent? Explain!
 (Hint: Computing the Wronskian may not be the best approach.)

10. (10 points)
 a. Check whether \(e^t \) and \(e^{-t} \) are solutions of \(x'' - x = 0 \).
 b. Check whether \(e^t \) and \(e^{-t} \) generate the general solution of \(x'' - x = 0 \). (Give reasons!)
 c. Find a constant solution of \(x'' - x = 3 \).
 d. Find the general solution of \(x'' - x = 3 \).

11. (10 points) Determine whether the system

\[
\begin{align*}
x + y + z &= 0 \\
x + 2y + z &= 0 \\
y + z &= 0
\end{align*}
\]

has a unique solution or no solution or infinitely many solutions; find all solutions.

12. (10 points) Find all solutions of the system

\[
\begin{align*}
x_1 + 2x_2 + x_3 - x_4 - x_5 &= 1 \\
2x_1 + 2x_2 + 2x_3 - 3x_4 - 2x_5 &= 1 \\
-x_1 - x_3 + 2x_4 + x_5 &= 1
\end{align*}
\]