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ABSTRACT. For projectivizations of rational maps Bellon and Viallet defined the no-

tion of algebraic entropy using the exponential growth rate of the degrees of iterates.

We want to call this notion to the attention of dynamicists by computing algebraic en-

tropy for certain rational maps of projective spaces (Theorem 6.2) and comparing it with

topological entropy (Theorem 5.1). The particular rational maps we study are mono-

mial maps (Definition 1.2), which are closely related to toral endomorphisms. Theo-

rems 5.1 and 6.2 imply that the algebraic entropy of a monomial map is always bounded

above by its topological entropy, and that the inequality is strict if the defining matrix

has more than one eigenvalue outside the unit circle. Also, Bellon and Viallet conjec-

tured that the algebraic entropy of every rational map is the logarithm of an algebraic

integer, and Theorem 6.2 establishes this for monomial maps. However, a simple ex-

ample using a monomial map shows that a stronger conjecture of Bellon and Viallet is

incorrect, in that the sequence of algebraic degrees of the iterates of a rational map of

projective space need not satisfy a linear recurrence relation with constant coefficients.

1. INTRODUCTION

1.1. Algebraic entropy. In their 1998 paper [BV], Bellon and Viallet introduced the con-

cept of “algebraic entropy” for the study of iterates of rational maps, measuring the rate

at which the algebraic degree of the N th iterate of the map grows as a function of N .

This natural and appealing notion (foreshadowed in work of Arnold [Ar] and paralleled

in work by Russakovskii and Shiffman [RS], albeit with different terminology) seems to

have escaped the attention of most researchers in ergodic theory and dynamical sys-

tems; to our knowledge, the only articles on this topic that have appeared in Ergodic

Theory and Dynamical Systems thus far are [Ma] and [Gu]. Hence, a major motiva-

tion behind the writing of this article is a desire to advertise the study of degree-growth

and to encourage readers of this journal to think about transporting established ideas

from measurable and topological dynamics into the setting of algebraic geometry. More

specifically, the following conjecture deserves attention from dynamicists of an alge-

braic bent:

Conjecture 1.1 (Bellon and Viallet). The algebraic entropy of every rational map is the

logarithm of an algebraic integer.

1.2. Monomial maps and projectivization. A second purpose in writing this article is

to show that a simple class of rational maps provides insight into fundamental questions

about algebraic entropy.

Definition 1.2. Every n-by-n nonsingular integer matrix A = (ai j )n
i , j=1

determines a

mapping (x1, . . . , xn ) 7→ (y1, . . . , yn ) from a dense open subset U of complex n-space C
n

to itself by

yi =
∏

j

x
ai j

j
.

(If all ai j ≥ 0, then U =C
n .) We call this an affine monomial map.
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Remark 1.3. The map carries the n-torus {(x1, . . . , xn ) : |x1| = · · · = |xn | = 1} to itself,

and the restriction of the map to the n-torus is isomorphic to the toral endomorphism

associated with A.

In this article we focus on a slightly different construction, namely, the projectiviza-

tion of the affine monomial map. Each projectivized monomial map sends a certain

dense open subset U of complex projective n-space CPn to itself. (See Section 2 for

relevant definitions and notation.) Moreover, the action of the map on the n-torus

{(x1 : . . . : xn+1) : |x1| = · · · = |xn+1| 6= 0} ⊆ CPn is once again isomorphic to the toral en-

domorphism associated with A.

Remark 1.4. In accordance with algebraic geometry nomenclature, we refer to maps

from C
n to itself as “affine” and maps from CPn to itself as “projective”.

Example 1.5. Let A be the 1-by-1 matrix whose sole entry is 2. The affine monomial

map associated with A is the squaring map z 7→ z2 on C, whereas the projective mono-

mial map associated with A is the squaring map on the complex projective line CP1,

also known as the Riemann sphere C∪ {∞}.

Example 1.5 is atypical in that the squaring map is well-defined on all of CP1. Later

we will see for most integer matrices A we need to restrict the monomial map associ-

ated with A to a dense open proper subset U of CPn . (From here on, the term “mono-

mial map” will usually refer to a complex projective monomial map unless otherwise

specified.)

1.3. Relations between entropies. A monomial map restricted to U is continuous, so

it makes sense to ask about its topological entropy. Since U is typically not a compact

space, it is not immediately clear how the topological entropy should be defined; for-

tunately, [HNP] shows that some of the most natural candidate definitions agree and

clarifies the relation between the main notions that have been proposed. In Section 5,

we show that for this notion of topological entropy, the topological entropy of the mono-

mial map associated with the matrix A is no less than the topological entropy of the toral

endomorphism associated with A, which in turn is equal to the logarithm of the product

of |z| as z ranges over all the eigenvalues of A outside the unit circle (Theorem 5.1).

At the same time, monomial maps fall into the framework of Bellon and Viallet, and

we show (Theorem 6.2) that the algebraic entropy of a monomial map is equal to the

logarithm of the spectral radius of the associated n-by-n integer matrix, i.e., the maxi-

mum value of the logarithm of |z| as z ranges over all the eigenvalues of A.

Theorems 5.1 and 6.2 imply that the algebraic entropy of a monomial map does not

exceed its topological entropy, and that the inequality is strict if the defining matrix has

more than one eigenvalue outside the unit circle.

Since the entries of A are integers, the eigenvalues of A are all algebraic integers. Thus

Theorem 6.2 (or, rather, Corollary 6.4) provides support for the Bellon–Viallet Conjec-

ture 1.1. On the other hand, we devise a monomial map that falsifies a stronger conjec-

ture of Bellon and Viallet’s, namely, that the sequence of degrees of the iterates of a ra-

tional map satisfy a linear recurrence with constant coefficients. The trick is to choose a

matrix A whose dominant eigenvalues are a pair of complex numbers r eiθ , r e−iθ where

θ is incommensurable with 2π. For such an A, the sequence of degrees is a patchwork of

a finite collection of integer sequences that individually satisfy linear recurrences with

constant coefficients; the degree sequence jumps around between elements of the fam-

ily in a nonperiodic fashion. Details are given in Section 7.
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We also describe in Section 8 an analogue of algebraic entropy applicable to the dy-

namics of piecewise linear maps.

These discoveries are not deep; they illustrate that there is a lot of “low-hanging fruit”

in the study of iteration of rational maps from a projective space to itself, and suggest

that a more vibrant interaction between the dynamical systems community and the in-

tegrable systems community (perhaps mediated by researchers in the field of several

complex variables) could lead to more rapid progress in the development of the theory

of algebraic dynamical systems.

2. DEFINITIONS

We review some basic facts about projective geometry (more details can be found in

[Mu]) before commencing a discussion of algebraic degree and algebraic entropy (draw-

ing heavily on [BV]).

2.1. Projective space.

Definition 2.1. Complex projective n-space is defined as CPn = (Cn+1 à {0})/ ∼, where

u ∼ v iff v = cu for some c ∈Cà {0}. We write the equivalence class of (x1, x2, . . . , xn+1) in

CPn as (x1 : x2 : . . . : xn+1).

The standard embedding P : (x1, x2, . . . , xn ) 7→ (x1 : x2 : . . . : xn :1) of affine n-space into

projective n-space has an “inverse map” A : (x1 : . . . : xn : xn+1) 7→ (
x1

xn+1
, . . . ,

xn
xn+1

). The

ratios xi /xn+1 (1 ≤ i ≤ n), defined on a dense open subset of CPn , are the affine coordi-

nate variables on CPn .

Geometrically, one may model CPn as the set of lines through the origin in (n +1)-

space. In this model, the point (a1 : a2 : . . . : an+1) in CPn corresponds to the line x1/a1 =
x2/a2 = ·· · = xn+1/an+1 in C

n+1 (for those i with ai = 0, we impose the condition xi = 0).

The intersection of this line with the hyperplane xn+1 = 1 is the point

(
a1

an+1
,

a2

an+1
, . . . ,

an

an+1
,1)

(as long as an+1 6= 0). We identify affine n-space with the hyperplane xn+1 = 1. Affine n-

space in this way becomes a Zariski-dense subset of projective n-space. (See e.g., [Ha]

for the definition and basic properties of the Zariski topology.) Since there is nothing

special about the n+1st coordinate in CPn , each of the hyperplanes xi = 1 (1≤ i ≤ n+1)

is a copy of (complex) affine n-space. Thus we might see projective n-space as the result

of gluing together n + 1 affine n-spaces in a particular way. Under this viewpoint, a

monomial map is the result of gluing together n +1 compatible toral endomorphisms

in a particular way.

Definition 2.2. We define the distance between two points in CPn as the angle 0 ≤
θ ≤ π/2 between the lines in C

n+1 associated with those points; this gives a metric

on CPn , and the resulting metric topology coincides with the quotient topology on

(Cn+1 à {0})/ ∼.

Remark 2.3. There is a more natural distance on projective space, namely the distance

induced by the Riemannian “Fubini–Study metric”, and it may play a role in the analysis

of the topological entropy of monomial maps; however, we will not pursue this topic

here.
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2.2. Rational maps and projectivization. We will use the term rational map in two dif-

ferent ways: both to refer to a function from (a Zariski-dense subset of) Cn to C
m given

by m rational functions of the affine coordinate variables, and to refer to the associ-

ated function from a Zariski-dense subset of CPn to CPm . (Henceforth, we will refer to

rational maps “from C
n to C

m” or “from CPn to CPm”, even though the map may be un-

defined on a proper subvariety of the domain.) That is, a “rational map” may be affine

or projective, according to context.

Definition 2.4. The projectivization of an affine map f is the map P ◦ f ◦A , written

with cleared fractions.

Example 2.5. The partial function f : x 7→ 1/x on affine 1-space (undefined at x = 0)

is associated with the function g : (x : y) 7→ (y : x) on projective 1-space (defined every-

where). f is its own inverse on its domain, while g is its own inverse globally.

The maps in this and the next example (some of them partial functions from affine

n-space to itself and some of them partial functions from projective n-space to itself)

will be called rational maps, and the context should make it clear whether we are in

the affine setting or the projective setting. In both settings, we identify functions that

agree on a Zariski-dense set. Under this identification, projectivization commutes with

composition, so, in particular, the N th power of the projectivization of an affine map is

identified with the projectivization of the N th power of the map.

Example 2.6. The partial function f : (x, y) 7→ (1/x,1/y) on affine 2-space (undefined at

x y = 0) is associated with the function g : (x : y : z) 7→ (y z : xz : x y) on projective 2-space.

g is undefined on x y = xz = y z = 0, and its composition with itself is undefined on the

proper subvariety x y z = 0 and is the identity map elsewhere. With the above identifica-

tion we can say that g ◦ g is the identity map and say that g is self-inverse.

Definition 2.7. A birational (projective) map is a rational map f from CPn to CPn with

a rational inverse g (satisfying f ◦g = g ◦ f = the identity map on a Zariski-dense subset

of CPn ).

Example 2.8. The affine map (x, y) 7→ (y, x y) with inverse (x, y) 7→ (y/x, x) projectivizes

as f : (x : y : z) 7→ (y z : x y : z2) with inverse g : (x : y : z) 7→ (y z : x2 : xz). (As a check, note

that f (g (x : y : z))= ((x2)(xz) : (y z)(x2) : (xz)2) = (x : y : z).)

2.3. Degree.

Lemma 2.9. Every rational map from CPn to CPm can be written in the form (x1 : . . . : xn+1) 7→
(p1(x1, . . . , xn+1) : . . . : pm+1(x1, . . . , xn+1)) where the m+1 polynomials p1, . . . , pm+1 are ho-

mogeneous polynomials of the same degree having no joint common factor.

Proof. When we apply A , we get n ratios of the affine coordinate variables, with each

ratio homogeneous of degree 0. When we then apply f , we get m rational functions of

the affine coordinate variables, with each rational function homogeneous of degree 0,

and when we apply P , we tack on a 1 at the end of the n-tuple, obtaining an (n +1)-

tuple. When we clear denominators, we multiply all n + 1 of the rational functions of

degree 0 by some homogeneous polynomial, and when we remove common factors, we

divide them by some homogeneous polynomial. The end result is an (n+1)-tuple of ho-

mogeneous polynomials of the same degree, having no joint common factor (although

any proper subset of the polynomials may have some factor in common). �
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Definition 2.10. The common degree of the polynomials in Lemma 2.9 is called the

degree of the map.

Example 2.11. The most familiar case is n = 1: the rational function x 7→ p(x)/q(x)

(where p and q are polynomials with no common factor) is associated with the projec-

tive map (x : y) = (x/y : 1) 7→ (p(x/y)/q(x/y) :1) = (p(x/y) : q(x/y)). The rational func-

tions p(x/y) and q(x/y) are homogeneous of degree 0; to make them polynomials in x

and y , we must multiply through by ymax(deg p,deg q). Hence the degree of the mapping is

max(deg p,deg q).

Example 2.12. A simple example with n > 1 is given by the projectivization of the mono-

mial map (x, y) 7→ (y, x y) of Example 2.8. The map f : (x : y : z) 7→ (y z : x y : z2) is of degree

2, and its square f 2 = f ◦ f : (x : y : z) 7→ ((x y)(z2) : (y z)(x y) :(z2)2) = (x y z2 : x y2z : z4) =
(x y z : x y2 : z3) is of degree 3.

Example 2.13. More generally, a 2-by-2 nonsingular integer matrix

A =
(

a b

c d

)

is associated with the affine map (x, y) 7→ (xa yb , xc yd ) and with the projective map

(x : y : z)= (x/z : y/z :1) 7→ ((x/z)a(y/z)b : (x/z)c (y/z)d :1). To make all three entries mono-

mials in x, y , and z, we multiply them by xmax(−a,−c ,0), ymax(−b,−d ,0) and zmax(a+b,c+d ,0),

so the degree of the mapping is max(−a,−c,0) + max(−b,−d ,0) + max(a + b,c + d ,0).

Applying this to the matrices
(

0 1

1 1

)

and

(

1 1

1 2

)

reproduces the calculations of the preceding example.

More generally still, we have:

Proposition 2.14. If A is an n-by-n nonsingular matrix with integer entries ai j , the de-

gree of the projective map associated with A is equal to

(2.1) D(A) :=
n
∑

j=1

Maxn
i=1(−ai j )+Maxn

i=1(
n
∑

j=1

ai j ),

where Max(. . . ) :=max(0, . . . ).

For each fixed n, the function D(·), viewed as a function on the space of all real n-

by-n matrices, is continuous and piecewise linear. That is, the hyperplanes given by all

the equations ai j = 0 (1 ≤ i , j ≤ n), ai j = ai ′ j (1 ≤ i , i ′, j ≤ n),
∑n

j=1 ai j = 0 (1 ≤ i ≤ n),

and
∑n

j=1 ai j =
∑n

j=1 ai ′ j (1 ≤ i , i ′ ≤ n) yield a decomposition of Rn2
into chambers such

that for all A within each closed chamber C , we have D(A) = LC (A) for some linear map

LC : Rn2 7→ R. Indeed, the degree of the monomial map associated with A is precisely

maxC LC (A), where C varies over all the chambers.

Example 2.15 (Degree and birational conjugacy). If we conjugate the involution (x, y) 7→
(y, x) via the birational involution (x, y) 7→ (x, x2 − y), we get the involution (x, y) 7→
(x2 − y, (x2 − y)2 − x). When we projectivize, we get a map (x : y : z) 7→ (x2z2 − y z3 :

(x2 − y z)2 − xz3 : z4) of degree 4 that is conjugate to the map (x : y : z) 7→ (y : x : z) of

degree 1. This demonstrates the important point that the degree of a projective map is

not invariant under birational conjugacy. However, as we will see in the next subsec-

tion, the rate at which the degree of a projective map grows under iteration of the map

is invariant under birational conjugacy.
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2.4. Algebraic entropy. Bellon and Viallet’s notion of algebraic entropy, like most no-

tions of entropy, owes its existence to an underlying subadditivity/submultiplicativity

property:

(2.2) deg( f ◦ g ) ≤ deg( f )deg(g )

for all rational maps f , g . This is an easy consequence of Lemma 2.9; strict inequality in

the lemma holds precisely when the compositions of the polynomials have some factors

in common. This is the “reduction-of-degree” phenomenon.

A first consequence of this inequality (via a standard argument; e.g., Proposition 9.6.4

of [KH]) is that (1/N ) logdeg( f N ) converges to a limit, that is, algebraic entropy is well-

defined:

Definition 2.16. limN→∞(1/N ) logdeg( f N ) is called the (Bellon–Viallet) algebraic en-

tropy of f .

A second consequence of (2.2), no less important, is that if g = φ−1 ◦ f ◦φ for some

birational φ, then f and g have the same algebraic entropy.

Proposition 2.17. Algebraic entropy is invariant under birational conjugacy.

Remark 2.18. It should be mentioned that another use of the term “algebraic entropy”

occurs in the dynamical systems literature, measuring the growth of complexity of el-

ements of a finitely generated group under iteration of some endomorphism of the

group; see, e.g., Definition 3.1.9 in [KH] and the recent article [Os]. There does not ap-

pear to be any connection between these two uses of the phrase.

3. EXISTING LITERATURE

Bellon and Viallet’s definition arose from a large body of work in the integrable sys-

tems community on the issue of degree-growth; see, e.g., [FV], [HV1] and [HV2]. More

recent articles on the topic coming from this community include [Be], [LRGOT] and

[RGLO].

3.1. Dynamical degrees. A notion equivalent to Bellon and Viallet’s was introduced at

the same time in independent work by Russakovskii and Shiffman [RS], drawing upon

earlier work by Friedland and Milnor [FM]. Russakovskii and Shiffman’s theory asso-

ciates various quantities, called dynamical degrees, with a rational map; the algebraic

entropy is simply the logarithm of the dynamical degree of order 1. To give the flavor of

this work (without purporting to define the notions being used), we state that the kth

dynamical degree of a rational map f from CPn to itself is given by

lim
N→∞

(∫

( f N )∗(ωk )∧ωn−k

)1/N

where ω denotes a Kähler form on CPn (a complex (1,1) form).

3.2. Intersections. Algebraic entropy has antecedents elsewhere in dynamics. For, as

was pointed out by Bellon and Viallet, the degree of a map is equal to the number

of intersections between the image of a generic line in CPn and a generic hyperplane

in CPn . Thus algebraic entropy measures the growth rate of the number of intersec-

tions between one submanifold and the image of another submanifold, and is therefore

related to the intersection-complexity research program of Arnold [Ar], introduced in

the early 1990s and mostly neglected since then by mathematicians (though studied by

some physicists: see e.g., [BM] and [AABM]). The intermediate dynamical degrees of
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Russakovskii and Shiffman can be given definitions in this framework; specifically, the

kth dynamical degree of a rational map from CPn to itself (for any k between 0 and n) is

equal to the number of intersections between the image of a generic CPk in CPn and a

generic CPn−k in CPn . Taking k = n, we see that the top dynamical degree of a rational

map is precisely its topological degree (the number of preimages of a generic point).

It is worth remarking that some articles (such as [BM] and [AABM]), in keeping with

Arnold’s terminology, use the term “complexity” of f to refer to limN→∞
N

√

deg( f N ), so

complexity is just another name for dynamical degree of order 1.

More recent articles on the topic of dynamical degree, intersections, and algebraic

entropy include [BK], [BFJ], [DF], [DS], [FJ], [T1], [T2], and [TEGORS]. These articles

often employ the language of several complex variables, with the apparatus of de Rham

currents and cohomology. See also Friedland’s survey [Fr4].

Lastly, we mention Veselov’s survey article [V], which contains a good treatment of

the multifarious notion of integrability.

4. EXAMPLES

In this section we present a collection of examples, making some basic observations

about most of them. Several of these examples appear repeatedly in later sections to

illustrate salient points at appropriate times.

Example 4.1. The Hénon map (x, y) 7→ (1+ y −Ax2,B x) projectivizes as (x : y : z) 7→ (z2+
y z − Ax2 : B xz : z2). For any nonzero constants A and B , the N th iterate of this map

has degree 2N , so every nondegenerate Hénon map has algebraic entropy log2. This

important example is discussed in detail by Bellon and Viallet.

Example 4.2. The map f : (x, y) 7→ (y, (y2 +1)/x) is the composition of the two involu-

tions (x, y) 7→ ((y2 +1)/x, y) and (x, y) 7→ (y, x) but is itself of infinite order. Its projec-

tivization is the map (x : y : z) 7→ (x y : y2 + z2 : xz). It can be shown that the degree of f N

is only 2N . Hence the algebraic entropy of f is zero. This example is discussed in greater

depth in [MP], [Ze], and [Ho2]. (Amusingly, if one replaces y2 by y in the definition of

the affine map f , one obtains a map of order 5 that was probably known to Gauss be-

cause of its connection with his pentagramma mirificum and is described in some detail

in [FR].)

Example 4.3 (Somos-4 recurrence). The map (w, x, y, z) 7→ (x, y, z, (xz + y2)/w) has a

similar flavor. Its N th iterate has degree that grows like N 2, so it too has algebraic en-

tropy zero. This is the Somos-4 recurrence, introduced by Michael Somos and first de-

scribed in print by David Gale [Ga].

Remark 4.4 (Laurent phenomenon). In the two preceding examples, the iterates of the

map are all Laurent polynomials (rational functions that can be written as a polynomial

divided by a monomial) thanks to “fortuitous” cancellations that occur every time one

performs a division that a priori might be expected to yield a denominator with more

than one term. (For Example 4.2, a proof of “Laurentness” can be found in [SZ]; for Ex-

ample 4.3, see [FZ, Theorem 1.8].) Fomin and Zelevinsky call this the “Laurent phenom-

enon”. For instance, in the case of example Example 4.2, the iterates of the (affine) map

involve rational functions of x and y with denominators x, x2 y , x3 y2, x4 y3, etc., even

though a priori one would expect denominators with two or more terms to arise. Specif-

ically, (x, y) gets mapped to (y, (y2 +1)/x), which gets mapped to ((y2 +1)/x, (y4 +2y2 +
1+x2)/x2 y , and so on. Indeed, when one iterates f complicated denominators do arise,
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but they always disappear when one cancels common factors between numerators and

denominators. E.g., when one squares (y4 + 2y2 + 1+ x2)/x2 y , adds 1, and divides by

(y2 +1)/x, one expects to see a factor of y2 +1 in the denominator, but the numerator

turns out to contain a factor of y2+1 as well, so that the end result simplifies to the Lau-

rent polynomial (y6+3y4+3y2+2x2 y2+x4+2x2+1)/x3 y2. In the projective context, this

simplification turns into an instance of the reduction-of-degree phenomenon alluded

to in Section 2.4. Thus the Laurent phenomenon can be seen as an important case of the

reduction-of-degree phenomenon, where reduction-of-degree applies in a significant

way to all the iterates of the map. The Laurent phenomenon has strong connections to

the confinement-of-singularities phenomenon (see e.g. [GRP], [HV1], [HV2], [LRGOT],

and [T1]).

Example 4.5. The map f : (w, x, y, z) 7→ (x, y, z, z(w z − x y)/(w y − x2)) does not quite

fall under the heading of the Laurent phenomenon, but comes close. In the iterates of

this map, the denominators are always a power of xz − y2 times a power of w y − x2.

The degrees of these iterates are 3, 5, 9, 13, 17, 23, 29, 37, 45, 53, 63, 73, 85, 97, . . . .

This unfamiliar-looking sequence is actually five quadratic sequences patched together:

deg( f N ) = (2/5)N 2 + (6/5)N + cN , where the cN depend only on the residue class of N

modulo 5. (Indeed, deg( f N ) = ⌊(2N 2 +6N +9)/5⌋; this formula was guessed by us and

proved by A. Hone in private correspondence.) Once again, the algebraic entropy is zero.

Example 4.6 (The Scott map). The map f : (x, y, z) 7→ (y, z, (y2 + z2)/x) is attributed

by David Gale [Ga] to Dana Scott. This too has the Laurent property ([FZ, Theorem

1.10]) and it can be shown (see [Ho1]) that deg( f N ) = 2,4,8,14,24,40, 66,108, · · · = 2(FN−
1), where FN denotes the Fibonacci numbers. Hence this map has algebraic entropy

log 1+
p

5
2 .

Example 4.7 (Eigentorus). A different instance of positive entropy, much closer to the

concerns of this article, is the monomial map (x, y) 7→ (y, x y) of Example 2.8 associated

with the 2-by-2 matrix

A =
(

0 1

1 1

)

.

Here,

(x, y) 7→ (y, x y) 7→ (x y, x y2) 7→ (x y2, x2 y3) 7→ (x2 y3, x3 y5) 7→ (x3 y5, x5 y8) 7→ . . .

The exponents are Fibonacci numbers, and the map has algebraic entropy 1+
p

5
2

.

The associated projective map (x : y : z) 7→ (y z : x y : z2) has an “eigentorus” {(x : y : z) :

|x| = |y | = |z| 6= 0}. One way to think about this eigentorus is to consider the matrix

A′ =





0 1 1

1 1 0

0 0 2





obtained from A by adjoining a column of nonnegative integers at the right, in such a

fashion that all the row-sums are equal to 2. Let V and V ′ denote C
2 and C

3, respec-

tively, and give them their standard bases, so that A : V 7→V and A′ : V ′ 7→V ′. The ma-

trix A′ has w = (1,1,1)T as an eigenvector, and we mod out by the eigenspace W ; the

action of A′ on the quotient space V ′/W is isomorphic to the action of A on the origi-

nal 2-dimensional space V . If we now mod out V by the module generated by the two

standard unit vectors in C
2 (note: not to be confused with modding out V by the sub-

space the two vectors span!), corresponding to the fact that e2πim+2πin = 1 = e0 for all



DEGREE-GROWTH OF MONOMIAL MAPS 9

integers m,n, we get a torus on which A acts as an endomorphism. The same is true in

C
3: additively modding out by multiples of w = (1,1,1)T corresponds to the projective

identification (complex dilation) ∼ in C
3.

This situation is quite general:

Proposition 4.8. For any nonsingular matrix A, the action of the monomial map as-

sociated with A, restricted to the eigentorus, is isomorphic to the toral endomorphism

associated with A.

Proof. Recall that every monomial map from CPn to itself can be written in the form

(x1 : . . . : xn+1) 7→ (p1(x1, . . . , xn+1) : . . . : pm+1(x1, . . . , xn+1)) where the m + 1 polynomials

p1, . . . , pm+1 are homogeneous monomials of the same degree (call it d) having no joint

common factor. We use the exponents of the n +1 variables in the n +1 monomials to

form an (n+1)-by-(n+1) matrix A′, and argue as above. �

There is a subtle but important point here, namely, that a monomial map may not

be well-defined on all of CPn , and that even where the monomial map is well-defined,

iterates of the map may not be. A brutal way to deal with the problem is to restrict the

monomial map to the subset of CPn in which all n + 1 affine coordinate variables are

nonzero. A more refined way is to restrict attention to the set U :=
⋂

N≥1 dom( f N ), the

intersection of the domains of the iterated maps f = f 1, f 2, f 3, ....

Example 4.9. The projective map f : (x : y : z) 7→ (y z : x y : z2) from Example 2.8 is not

well-defined at (1:0: 0) or (0:1: 0), and the square of this map is not well-defined at

(1:1: 0). We could restrict f to the set {(x : y : z) : x y z 6= 0}, since this restricted map is

continuous (and indeed is a homeomorphism), but we could also restrict to the more

inclusive set U = {(x : y : z) : z 6= 0}.

The only truly well-behaved monomial maps are those for which the matrix A is a

positive multiple of some permutation matrix. In all other cases, the projective mono-

mial map has singularities:

Example 4.10. Although the affine map (x, y) 7→ (x, y2) seems to be nonsingular, it “re-

ally” has a singularity at infinity, as we can see when we projectivize it to (x : y : z) 7→
(xz : y2 : z2), which is undefined at (1: 0: 0).

The typical monomial map has essential singularities; there is no way to extend the

partial function to a continuous function defined on all of CPn .

In this respect, projective monomial maps are somewhat reminiscent of return maps

for nonsmooth billiards, which share the property of being undefined on a small portion

of the space (corresponding to trajectories in which the ball goes into a corner).

However, unlike the billiards case, in which a seemingly innocuous orbit can be well-

defined for millions of steps and then suddenly hit a corner, projective monomial maps

have fairly tame sets of singularities, topologically speaking:

Proposition 4.11. If f is a monomial map from CPn to itself, and x is a point in CPn

for which x, f (x), f 2(x), . . . , f n(x) are all well-defined, then f N (x) is well-defined for all

N > 2n+1.

Proof. Each point in CPn can be represented by an (n + 1)-tuple of 0’s and 1’s, where

a 1 stands for any nonzero complex number. Call this the signature of the point. It is

easy to see that the signature of a point determines whether the point is in the domain

of f , and in the affirmative case, determines the signature of the image of the point



10 BORIS HASSELBLATT AND JAMES PROPP

under f . If f k (x) is well-defined for all 0 ≤ k ≤ 2n+1, then two of the points f k (x) must

have the same signature, so that the sequence of signatures has become periodic, and

iteration of the map can be continued indefinitely without fear of hitting the non-point

“(0 : 0 : · · · : 0)”.

The bound 2n+1 can actually be replaced by a much smaller bound on the order of n2,

since the way in which the signatures evolve over time correspond to the way in which

the entries of the vectors v , M v , M2v , . . . evolve, where M is a nonnegative matrix and

v is a nonnegative vector; under this correspondence, 0’s correspond to positive entries

and 1’s correspond to zeroes. For details on the quadratic bound, see [W]. �

Remark 4.12. Proposition 4.11 shows that the set of x in CPn for which the infinite

forward f -orbit of x is not well-defined is a union of proper subspaces that form a (usu-

ally nonpure, i.e., mixed-dimension) complex projective subspace arrangement whose

complement U is a dense open subset of CPn and is the natural domain on which to

investigate the topological dynamics of f .

The dynamics of a monomial map on U can be fairly complicated combinatorially:

Example 4.13. The monomial map f : (x : y : z) 7→ (xz : x y : z2) associated with the matrix
(

1 0

1 1

)

and its iterates are well-defined on most, but not all, of the complex projective plane

CP2. The points that lie on the projective line z = 0 (excepting the point (0: 1: 0) itself)

are mapped by f to the point (0: 1: 0), which is not in the domain of f . Meanwhile,

points on the projective line y = 0 are fixed points of f , except for the point (1: 0: 0)

(where the projective line y = 0 meets the projective line z = 0), which is not in the

domain of f . Also, every point on the projective line x = 0 is mapped by f to the fixed

point (0: 0: 1).

In the terminology of algebraic geometry, the 1-dimensional subvariety x = 0 gets

blown down to the 0-dimensional subvariety x = y = 0, while the 0-dimensional subva-

riety x = z = 0 gets blown up to the 1-dimensional subvariety x = 0 (to see why the latter

assertion is true, consider how f acts at points near (0: 1: 0)).

For a discussion of iteration of rational maps that attends to blowing up and blowing

down and its implications for degree-growth, see [BK].

5. TOPOLOGICAL ENTROPY

5.1. Choice of entropy. Recall that Remark 4.12 introduced the set U as the set of points

x such that f N (x) is defined for all N ≥ 1. Since this dense open subset of CPn inher-

its the angle-metric from the compact space CPn , we can apply the Bowen–Dinaburg

definition of topological entropy [Bo], [Di] by way of spanning or separated sets. But it

is desirable to have a more intrinsic way of thinking about the topological dynamics of

f . Friedland’s approach in such cases (see [Fr1], [Fr2], and [Fr3]) is to compactify the

dynamical system inside a countable product of copies of the original space. Specifi-

cally, one identifies the point x with the orbit (x, f (x), f 2(x), . . . ) in (CPn)∞, and takes

the closure of the set of all such orbits; this gives a compact space to which the origi-

nal Adler–Konheim–McAndrew definition [AKM] can be applied. The results of [HNP]

show that these two different ways of defining entropy coincide in the case of monomial

maps.
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5.2. Monomials.

Theorem 5.1. If A is an n-by-n nonsingular integer matrix, the topological entropy of

the monomial map from CPn to itself associated with A (as in Definition 1.2) is at least

the logarithm of the modulus of the product of all the eigenvalues of A outside the unit

circle.

Proof. We use the fact that entropy does not increase when one restricts the dynamical

system to an invariant set. Hence, by Proposition 4.8, the topological entropy of the

monomial map on CPn is at least the topological entropy of the toral endomorphism

associated with A. But the topological entropy of a toral endomorphism is the logarithm

of the modulus of the product of the eigenvalues that lie outside the unit circle (see [LW]

for the history of this result). �

5.3. Conjectured equality. We believe that the topological entropy of a monomial map,

is exactly equal to the quantity in Theorem 5.1, but we have not found a proof of this.

One way to prove this equality would be to make use of the intermediate dynamical

degrees mentioned in Section 3. A theorem of Dinh and Sibony [DS] says that the topo-

logical entropy of a map is bounded above by the logarithm of the maximal dynamical

degree. If we order the n eigenvalues of A in such a way that |λ1| ≥ |λ2| ≥ · · · ≥ |λn |, then

it is natural to conjecture that the kth dynamical degree of a monomial map is equal to

|λ1λ2 · · ·λk |. (This conjecture is true for k = n: the product of all the eigenvalues is equal

to the determinant of the matrix A, whose absolute value is the degree of the associated

monomial map. The conjecture is also true for k = 1: this is the content of Theorem 6.2

below.) Note that, as k varies, the maximum value achieved by |λ1λ2 · · ·λk | is equal to

the modulus of the product of those eigenvalues that lie outside the unit circle, which is

known to equal the topological entropy of the toral endomorphism associated with A.

Hence, our conjectural formula for the dynamical degrees of a monomial map, in com-

bination with the theorem of Dinh and Sibony, would imply that the topological entropy

of a monomial map is bounded by the topological entropy of the associated toral endo-

morphism. Since the reverse inequality holds as well (see Subsection 5.1), the desired

equality would follow.

6. ALGEBRAIC ENTROPY

Recall the formula (2.1) for D(A) that gives the degree of the monomial map associ-

ated with the n-by-n matrix A.

Remark 6.1. It is easy to see that composition of affine monomial maps from C
n to

C
n is isomorphic to multiplication of n-by-n matrices. So computing the degree of the

N th iterate of a monomial map is tantamount to computing D(AN ), and the algebraic

entropy of the monomial map is just limN→∞(1/N ) logD(AN ).

Theorem 6.2. If A is an n-by-n nonsingular integer matrix, the algebraic entropy of the

monomial map from CPn to itself associated with A is equal to the logarithm of the spec-

tral radius of A.

Proof. The entries of AN are O(r N ), where r is the spectral radius of A, so D(AN ) =
O(r N ), and the algebraic entropy of the map is at most the logarithm of the spectral

radius. To prove equality suppose for the sake of contradiction that D(AN ) = O(cN )

with 1 < c < r . Replacing c by a larger constant if necessary, we get D(AN ) < cN for

all sufficiently large N . Recalling the formula for D(·), we conclude from this that for
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large N , every entry of AN is greater than −cN and every row-sum of AN is less than

cN . That is, we now have upper bounds on the row-sums of AN and on the negatives of

the individual entries of AN ; from these, we can derive an upper bound on the entries

of AN . For, since each entry of AN can be written as the sum of the entries in its row

minus the n−1 entries in that row other than itself, every entry of AN is less than ncN .

Hence for every unit vector u (whose components all have modulus less than 1), each

component of AN u has modulus at most n(ncN ) = n2cN . Hence the sum of the squares

of the entries of AN u is at most n(n2cN )2, so the norm of AN u is at most n5/2cN . But

when N is large enough, this estimate contradicts the fact that AN has a unit eigenvector

u for which the norm of AN u is r N . �

Theorems 5.1 and 6.2 together imply

Corollary 6.3. For any A with two or more (not necessarily distinct) eigenvalues outside

the unit circle, the algebraic entropy of the monomial map associated with A is strictly

less than the topological entropy of the map.

An immediate consequence of Theorem 6.2 is

Corollary 6.4. The algebraic entropy of the monomial map is equal to the logarithm of

an algebraic integer.

Proof. The spectral radius r of A is an algebraic integer: Let z be a dominant eigenvalue

of A, so that r = |z|. Since z is an algebraic integer, so is z, and hence so is
p

zz = |z| =
r . �

This establishes Conjecture 1.1 for monomial maps.

7. COUNTEREXAMPLES

7.1. Entropy gap. Another easy consequence of Theorem 6.2 is

Corollary 7.1. There exist monomial maps for which the topological entropy is strictly

greater than the algebraic entropy.

Proof. The affine map (x, y) 7→ (x2, y3) has topological entropy log6 and algebraic en-

tropy log3. �

7.2. Inverses. One might be tempted to conjecture that the algebraic entropy of a bira-

tional map is equal to the algebraic entropy of its inverse (since most notions of entropy

are preserved by inversion). Toral automorphisms give an easy way to see that this fails

in general, because the spectral radius of a matrix that is invertible over Z is typically

not equal to the spectral radius of its inverse:

Example 7.2. Let

A :=





−1 1 0

−1 0 1

1 0 0





with associated monomial map f : (x, y, z) 7→ (y/x, z/x, x). The characteristic polyno-

mial of A is t 3 + t 2 + t −1, whose eigenvalues are approximately 0.54 and −0.77±1.12i .

The spectral radius of A is
√

(−0.77. . . )2 + (1.12. . . )2 ≈ 1.36 and the spectral radius of A−1

is 1/.54 · · · ≈ 1.84, which is the square of the spectral radius of A. Hence the algebraic en-

tropy of the monomial map f −1 is twice the algebraic entropy of f .
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7.3. Degree sequence and linear recurrences. A more subtle conjecture, due to Bellon

and Viallet, is that for any rational map f , the sequence (deg( f N ))∞N=1 satisfies a linear

recurrence with constant coefficients and leading coefficient 1.

If this were true, it would certainly imply that the algebraic entropy of a rational map

is always the logarithm of an algebraic integer. However, the map f in Example 7.2 gives

a counterexample to this claim:

Proposition 7.3. For the rational map f in Example 7.2 the sequence (deg( f N ))∞
N=0

= 1,

2,3,4,6,9,12, 17,25, 33,45, 65, 85,112,159,215,262, 365, 524, 627, 833,. . . of degrees does not

satisfy any linear recurrence with constant coefficients.

To see what is going on with this example on an intuitive level, let dN denote the

degree of f N , and consider the sequence cN :=−2,2,1,−5,6,0,−11,17,−6,−22, 45,−29,

−38,112,−103,−47,262,−318,9, 571,−898,. . . , many of whose entries (shown in bold-

face) agree with the corresponding entries of the degree sequence for f . cN is the sum

of the entries in the last row of AN minus the sum of the entries on the principal diagonal

of AN . In terms of the notation introduced following Proposition 2.14, cN = LC (AN ) for a

particular chamber C . It appears empirically that the sequence of matrices A, A2, A3, . . .

visits this chamber C infinitely often, so that cN = dN for infinitely many values of N .

Certainly some chamber is visited infinitely often, so for simplicity we will assume that

this particular chamber gets visited infinitely often. (The analysis given below does not

depend in any essential way on which chamber C is being discussed.)

Proof. The sequence of cN ’s satisfies the linear recurrence cN = cN−3 − cN−2 − cN−1 as a

consequence of the Cayley–Hamilton theorem (note that the characteristic polynomial

of this recurrence coincides with the characteristic polynomial of the matrix A), so the

generating function
∑∞

N=0 cN xN is the power series expansion of a rational function of x.

If the sequence dN satisfied some linear recurrence with constant coefficients, then the

generating function
∑∞

N=0 dN xN would also be the power series expansion of a rational

function of x. It would follow that the generating function
∑∞

N=0(dN − cN )xN = 3x0 +
0x1+2x2+9x3+0x4+. . . must also be the power series expansions of a rational function

of x. It follows from a standard theorem on such expansions due in various versions

to Skolem, Mahler, and Lech (see e.g., Exercise 3.a in Chapter 4 of [St]) that the set S

consisting of those indices N for which dN − cN = 0 must be eventually periodic, that

is, there must be some union of (one-sided) arithmetic progressions whose symmetric

difference with S is finite.

To see that this cannot happen, note that dN = cN precisely when several things are

simultaneously true of the matrix AN : For i = 1,2,3 the j ,1-entry of AN is nonpositive

and does not exceed any other entry in its column, and the sum of the entries in the third

row of AN is at least zero and is greater than or equal to both of the other row-sums of

AN . In particular, if dN −cN vanishes along some arithmetic progression of values of N ,

the 1,1 entry of AN must be nonpositive along some arithmetic progression of values of

N .

On the other hand, we can use a basic fact from linear algebra to express the 1,1 entry

of AN as an algebraic function of N . Recall that the set of solutions of a homogeneous

linear difference equation with characteristic polynomial p(t) is spanned by the set of

sequences of the form sN = N i r N where r is a root of p(t) and i is some nonnegative

integer strictly smaller than the multiplicity of r . In particular, there is an exact formula

for the 1,1 entry of AN of the form c1α
N + c2β

N + c3β
N

, where α is the real root of the

characteristic polynomial t 3 + t 2 + t −1 = 0 and β= r eiθ and β= r e−iθ are the complex
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roots. Since c1α
N + c2β

N + c3β
N

is real for all N , c1 is real and c2 and c3 are complex

conjugates of one another.

Lemma 7.4. No power of β is real, i.e., θ is incommensurable with 2π.

Proof. If there were a positive integer m with βm real, then αm , βm , and β
m

would be

the roots of a cubic with rational coefficients possessing a double root βm = β
m

; this

would imply that αm and βm are rational. But αm , like α itself, is an algebraic integer,

so the only way it can be rational is if it is a rational integer; and this cannot be, since it

is a nonzero real number with magnitude strictly between 0 and 1. �

Lemma 7.5. The coefficients c2 and c3 = c2 are nonzero.

Proof. If c2 and c3 vanish, the 1,1 entry of AN is always c1α
N . Taking two different values

of N for which the 1,1 entry of AN is an integer, we find that some power of α is rational,

and so then is some power of β, contradicting Lemma 7.4. �

Lemma 7.4 implies that for values of N lying in any fixed arithmetic progression, the

(complex) values taken on by (β/r )N are dense in the unit circle, and (by Lemma 7.5) the

(real) values taken on by c2(β/r )N +c2(β/r )N are dense in some interval centered at 0. In

particular, for values of N in that arithmetic progression, c1(α/r )N +c2(β/r )N +c2(β/r )N

will spend a positive fraction of the time in a ray of the form (ǫ,∞) for some ǫ> 0. This

means that the 1,1 entry of AN , being equal to c1α
N + c2β

N + c2β
N

, will be positive for

infinitely many values of N (and hence at least one) in our arithmetic progression. But

this contradicts our choice of the arithmetic progression.

Following back the chain of suppositions, we see that we must conclude that the

sequence d0,d1,d2, . . . does not satisfy any linear recurrence with constant coefficients,

and our proof is complete. �

More generally, the same reasoning that is given above shows

Proposition 7.6. Let A be any nonsingular n-by-n matrix whose dominant eigenvalues

are a pair of complex numbers r eiθ , r e−iθ where θ is incommensurable with 2π. For

iterates of the monomial map associated with A, the degree sequence does not satisfy any

linear recurrence with constant coefficients.

Example 7.7. The 2-by-2 matrix
(

1 2

−2 1

)

associated with the (nonbirational) rational map (x, y) 7→ (x y2, y/x2) has eigenvalues

1±2i , and the angle between the lines y = 2x and y =−2x is irrational (i.e., incommen-

surable with π), so we see that the degree sequence will not satisfy any linear recurrence

with constant coefficients.

7.4. Conjugation. We have not studied what happens when one starts with a mono-

mial map and conjugates it via a nonmonomial birational map, obtaining (in general)

a nonmonomial map. In particular, it seems conceivable that a suitable nonmonomial

conjugate of the main counterexample of this paper might be better behaved, in the

sense that its degree sequence would satisfy a linear recurrence.

It should be emphasized that the degree sequence associated with a rational map is

not invariant under birational conjugacy. Conjugating the map f may yield a birational

map with a different degree sequence. Indeed, we saw in Example 2.15 that the very first
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term of the degree sequence, namely the degree of the map itself, may change under

birational conjugacy.

7.5. The price of projectivization. Jean-Marie Maillard, in private communication, has

pointed out that if one works in the affine context and simply studies iterates of the map-

ping f : (x, y, z) 7→ (y/x, z/x, x) in Example 7.2, one can express the iterates in closed

form: f N (x, y, z) is a triple of monomials, each of which can be written in the form

xaN ybN zcN where the sequences a1, a2, . . . , b1,b2, . . . , and c1,c2, . . . do satisfy linear re-

currence relations with constant coefficients. (Since there is no projective cancella-

tion going on here, this is just a matter of ordinary linear algebra, in multiplicative dis-

guise.) Maillard suggests through this example that projectivization, although concep-

tually compelling, may come at a price. In particular, the nonrationality of the degree

sequence for iterates of the associated projective map might be viewed as a result of our

insistence on working in the projective setting rather than the affine setting.

Note furthermore that projectivization of the affine monomial map does not usually

remove singularities, and that projectivization takes a seemingly singularity-free map

like (x, y) 7→ (x, y2) and tells us that it actually has a singularity at infinity.

8. PIECEWISE LINEAR MAPS

Although the main focus of this article has been monomial maps, a general dynami-

cal theory of birational maps would also treat more general maps of the sort considered

in Section 4, such as the Scott map (x, y, z) 7→ (y, z, (y2 + z2)/x) in Example 4.6. Just as

monomial maps are closely associated with linear maps from R
n to itself (which in turn

are closely associated with endomorphisms of the n-torus), certain nonmonomial maps

are associated with piecewise linear maps from R
n to itself.

8.1. Subtraction-free maps. We say a map is subtraction-free if each component of

the map can be written as a subtraction-free expression in the coordinate variables.

E.g., consider the map f : (x, y) 7→ (x2 + x y + y2, x2 − x y + y2). Since x2 − x y + y2 =
(x3 + y3)/(x + y), both components of f (x, y) can be written in terms of x and y using

only addition, multiplication, and division. Hence the mapping is subtraction-free. This

implies that the iterates of f can also be expressed using only addition, multiplication,

and division. The way in which this leads us to consider piecewise linear maps is that

the binary operations (a,b) →max(a,b), (a,b) → a+b, and (a,b) → a−b, satisfy many of

the same properties as the binary operations (x, y) → x+y , (x, y) → x y , and (x, y) → x/y ,

respectively (with the additive identity element 0 in the former setting corresponding to

the multiplicative identity element 1 in the latter setting). More specifically, all of the

simplifications that occur when one iterates subtraction-free rational maps are forced

to occur when one iterates the associated piecewise linear maps. So, for example, the

cancellations that permit the rational map (x, y) 7→ (y, (y +1)/x) to be of order 5 force

the piecewise linear map (a,b) 7→ (b,max(b,0)−a) to be of order 5 as well.

The operation on subtraction-free expressions that replaces multiplication by addi-

tion, division by subtraction, and addition by max, or min, has attracted a good deal of

attention lately; it is known as “tropicalization”, and a good introduction to the topic is

[SS].

Example 8.1. It is interesting to compare (x, y) 7→ (y, (y2 +1)/x) from Example 4.2 with

(a,b) 7→ (b,max(2b,0)− a). Iteration of the former map gives rise to the sequence of ra-

tional functions x, y ,
y2 +1

x
,

y4 + x2 +2y2 +1

x2 y
,

y6 + x4 +2x2 y2 +3y4 +2x2 +3y2 +1

x3 y2
, . . . ,
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while iteration of the latter map gives rise to the sequence of piecewise linear functions

max(−1a−0b,−1a+2b,−1a−0b),

max( 0a−1b,−2a+3b,−2a−1b),

max( 1a−2b,−3a+4b,−3a−2b),

max( 2a−3b,−4a+5b,−4a−3b),

etc. (Note that the first of these piecewise linear functions can be written more simply as

max(−a,−a +2b), but expressing it in a more redundant fashion brings out the general

pattern.)

Example 8.2. It is even more interesting to consider the piecewise linear analogue of the

Scott map (x, y, z) 7→ (y, z, (y2+z2)/x) from Example 4.6, which is (a,b,c) 7→ (b,c,max(2b,2c)−
a). Iteration of the latter map gives rise to the sequence of piecewise linear functions

max( −1a +2b−0c, −1a −0b +2c,−1a +0b+2c,−1a +2b+0c),

max( −2a +3b−0c, −2a −1b +4c, 0a −1b+2c,−2a +3b−0c),

max( −4a +6b−1c, −4a −2b +7c, 0a −2b+3c,−2a +4b −c),

max( −7a+10b −2c, −7a −4b+12c, 1a −4b+4c,−3a +6b−2c),

max(−12a+17b −4c,−12a −7b+20c, 2a −7b+6c,−4a +9b−4c),

max(−20a+28b −7c,−20a−12b +33c, 4a−12b+9c,−6a+14b−7c),

etc., in which the coefficients can be expressed in terms of Fibonacci numbers. The Lip-

schitz constants of these maps grow exponentially, with asymptotic growth rate given

by the golden ratio.

8.2. Lyapunov growth. More generally, when one compares a subtraction-free rational

recurrence with its piecewise linear analogue, one often finds that the growth rate for

the Lipschitz constants of iterates of the piecewise linear map (which one can view as a

kind of global Lyapunov exponent) is equal to the growth rate for the degrees of iterates

of the rational map. In fact, every cancellation that occurs when one iterates the rational

map also occurs when one iterates the piecewise linear map, so the algebraic entropy of

the former is an upper bound on the logarithm of the global Lyapunov exponent of the

latter.

Remark 8.3. Purists may note that we are modifying the usual notion of Lyapunov ex-

ponent in several respects. First, we are re-ordering quantifiers. Ordinarily one looks

at the forward orbit of a specific point x, and sees how the maps f N expand neighbor-

hoods of x with N going to infinity, and only after defining this limit does one let x vary

over the space as a whole; here we are taking individual values of N and for each such N

we ask for the largest expansion that f N can cause on the whole space. Another differ-

ence is that our piecewise linear maps are not differentiable, so we are using Lipschitz

constants as a stand-in for derivatives.

8.3. PL maps and PL recurrences. It may seem that we have wandered a bit from the

main themes of this article, but the reader may recall that piecewise linear maps entered

the article fairly early on, via the formula (2.1).

Example 8.4. The affine Scott map (x, y, z) 7→ (y, z, (y2 + z2)/x) from Example 4.6 (and

Example 8.2) gives rise to a sequence of Laurent polynomials whose denominators are

x1 y0z0, x2 y1z0, x4 y2z1, x7 y4z2, x12 y7z4, x20 y12z7, . . . where the exponent-sequence 0,
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1, 2, 4, 7, 12, 20, . . . is associated with iteration of the piecewise linear map (a,b,c) 7→
(b,c,max(2b,2c)−a) we associated with the Scott map in Example 8.2.

Example 8.5. Consider the affine monomial map f : (x, y, z) 7→ (y/x, z/x, x) of Exam-

ple 7.2 discussed in Subsection 7.5. If we write f N (x, y, z) as

(p1
N (x, y, z)/q1

N (x, y, z), p2
N (x, y, z)/q2

N (x, y, z), p3
N (x, y, z)/q3

N (x, y, z))

where (for 1 ≤ i ≤ 3) p i
N and q i

N are monomials with no common factor, then we can

write each sequence p i
1, p i

2, p i
3, . . . or q i

1, q i
2, q i

3, . . . in the form xa1 yb1 zc1 , xa2 yb2 zc2 , xa3 yb3 zc3 ,

. . . where each of the sequences a1, a2, a3, . . . , b1,b2,b3, . . . , and c1,c2,c3, . . . satisfies a lin-

ear recurrence. Indeed, it is possible that the degree sequence for iterates of the pro-

jective monomial map (w : x : y : z) 7→ (w x : w y : w z : x2) (the projectivization of f ) satis-

fies a piecewise linear recurrence, but we have not explored this. (For a simple exam-

ple of an integer sequence that satisfies a piecewise linear recurrence but does not ap-

pear to satisfy any linear recurrence with constant coefficients, consider the sequence

1,1,−1,−1,−3,1,3,9, 7,3,−11,−11,−17,11, 33,67, 45,1, . . . satisfying the recurrence an =
max(an−1, an−2)−2an−3.)

8.4. PL projectivization. As a final note, we mention that projectivization has an ana-

logue in the piecewise linear context, namely, modding out (additively) by multiples of

(1,1,1).

Example 8.6. Consider once again the map (a,b,c) 7→ (b,c,max(2b,2c)−a) from Exam-

ples 8.2 and 8.4. It sends (a′,b′,c ′) = (a,b,c)+(d ,d ,d), to (b,c,max(2b,2c)−a)+(d ,d ,d),

that is, it commutes with adding constant multiples of (1,1,1), so we can consider a quo-

tient action that acts on equivalence classes of triples, where two triples are equivalent

if their difference is a multiple of (1,1,1).

This quotient construction applies whenever our piecewise linear map is “homoge-

neous”, in the sense that there exists a constant m such that each component of the

piecewise linear map is a max of linear functions, all of which have coefficients adding

up to m. (In the example we just considered, m = 1.)

9. COMMENTS AND OPEN QUESTIONS

We suggest that in some respects, the logarithm of the maximal dynamical degree

behaves in a fashion more analogous with other kinds of entropy than Bellon and Vial-

let’s notion of algebraic entropy does. (Some of our e-mail correspondents have taken

this point of view as well.) In the case of a monomial map associated with a nonsingular

integer matrix A, we have already shown that algebraic entropy as defined by Bellon and

Viallet is the spectral radius of A, whereas the logarithm of the maximal dynamical de-

gree of the map stands a decent chance of being equal to the topological entropy of the

toral endomorphism associated with A. Furthermore, Tien-Cuong Dinh has pointed out

to us in private correspondence that if f is any birational map from projective n-space

to itself, the kth dynamical degree of f is equal to the n−kth dynamical degree of f −1 (as

a trivial consequence of the equality between
∫

( f N )∗(ωk )∧ωn−k and
∫

ωk∧( f −N )∗ωn−k

obtained by a coordinate change), from which it easily follows that the logarithm of the

maximal dynamical degree of f −1 equals the logarithm of the maximal dynamical de-

gree of f .

Question 9.1. Is the algebraic entropy of a monomial map always equal to the topolog-

ical entropy of the associated toral endomorphism?
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Question 9.2. Is the algebraic entropy of a map always bounded above by its topological

entropy?

We have seen that this is true for monomial maps. The discussion in Subsection 5.3

is pertinent. Also see [Ng].

A different sort of question about inequalities is:

Question 9.3. Is algebraic entropy nonincreasing under factor maps?

That is, if we have birational maps f : CPn 7→ CPn and g : CPm 7→ CPm , and a rational

map φ : CPn 7→ CPm satisfying

φ◦ f = g ◦φ,

must the algebraic entropy of g be less than or equal to the algebraic entropy of f ?

To avoid trivial counterexamples, we should insist that the map be dominant (i.e.,

that its image is Zariski-dense in CPm); here, this is equivalent to assuming n ≥ m.

Of continuing importance is the Conjecture 1.1 of Bellon and Viallet:

Question 9.4. Is the algebraic entropy of a rational map always the logarithm of an

algebraic integer?

One might also try to clarify the situation for the case in which algebraic entropy

vanishes.

Question 9.5. Can the degree sequence of a rational map be subexponential but super-

polynomial?

Question 9.6. If the degree sequence of a rational map is bounded above by a polyno-

mial, must it grow like N k for some nonnegative integer k, or can it exhibit intermediate

asymptotic behavior, such as
p

N ?

Even though monomial maps provide counterexamples to Bellon and Viallet’s con-

jecture about degree sequences, it surely cannot be a mere coincidence that so many of

the examples studied by Bellon and Viallet and others have the property that the degree

sequences satisfy recurrence relations with constant coefficients. So one might inquire

whether we can rescue Bellon and Viallet’s conjecture on degree sequences by adding

extra hypotheses. One such possible extra hypothesis is suggested by the fact (pointed

out to us by Viallet) that many of the birational mappings studied by Bellon and Viallet

can be written as compositions of involutions.

Question 9.7. If a rational map is a composition of involutions, must its degree se-

quence satisfy a linear recurrence with constant coefficients?

It may be worth mentioning that, under the hypothesis of Question 9.7, the rational

map is birationally conjugate to its inverse, so the two maps have the same algebraic

entropy.

Question 9.8. Must the degree sequence of a rational map satisfy a piecewise linear

recurrence with constant coefficients?

Question 9.9. Is there a simple formula for the intermediate dynamical degrees of mono-

mial maps, generalizing Proposition 2.14?

Intermediate dynamical degrees (first defined in [RS]), although conceptually quite

natural, have proved to be difficult to compute in all but the simplest of cases; mono-

mial maps constitute a setting in which one might hope to do computations and prove
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nontrivial results. It is natural to conjecture that the kth dynamical degree of a mono-

mial map is equal to |λ1λ2 · · ·λk |, where λ1,λ2, . . . are the eigenvalues of the associated

matrix, ordered so that |λ1| ≥ |λ2| ≥ . . . . As was remarked in Subsection 5.3, a proof of

this conjecture for all k would yield an affirmative answer to Question 9.1.
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