Contents

Preface xiii

0. Introduction 1
 1. Principal branches of dynamics 1
 2. Flows, vector fields, differential equations 6
 3. Time-one map, section, suspension 8
 4. Linearization and localization 10

Part 1 Examples and fundamental concepts

1. First examples 15
 1. Maps with stable asymptotic behavior 15
 Contracting maps; Stability of contractions; Increasing interval maps
 2. Linear maps 19
 3. Rotations of the circle 26
 4. Translations on the torus 28
 5. Linear flow on the torus and completely integrable systems 32
 6. Gradient flows 35
 7. Expanding maps 39
 8. Hyperbolic toral automorphisms 42
 9. Symbolic dynamical systems 47
 Sequence spaces; The shift transformation; Topological Markov chains; The
 Perron–Frobenius theorem for positive matrices

2. Equivalence, classification, and invariants 57
 1. Smooth conjugacy and moduli for maps 57
 Equivalence and moduli; Local analytic linearization; Various types of moduli
 2. Smooth conjugacy and time change for flows 64
 3. Topological conjugacy, factors, and structural stability 68
 4. Topological classification of expanding maps on a circle 71
 Expanding maps; Conjugacy via coding; The fixed-point method
 5. Coding, horseshoes, and Markov partitions 79
 Markov partitions; Quadratic maps; Horseshoes; Coding of the toral automorphism
 6. Stability of hyperbolic toral automorphisms 87
 7. The fast-converging iteration method (Newton method) for the conjugacy problem 90
 Methods for finding conjugacies; Construction of the iteration process
 8. The Poincaré–Siegel Theorem 94
 9. Cocycles and cohomological equations 100

3. Principal classes of asymptotic topological invariants 105
 1. Growth of orbits 105
 Periodic orbits and the ζ-function; Topological entropy; Volume growth; Topological complexity: Growth in the fundamental group; Homological growth
2. Examples of calculation of topological entropy
 Isometries; Gradient flows; Expanding maps; Shifts and topological Markov chains; The hyperbolic toral automorphism; Finiteness of entropy of Lipschitz maps; Expansive maps
3. Recurrence properties
4. Statistical behavior of orbits and introduction to ergodic theory
 1. Asymptotic distribution and statistical behavior of orbits
 Asymptotic distribution, invariant measures; Existence of invariant measures; The Birkhoff Ergodic Theorem; Existence of asymptotic distribution; Ergodicity and unique ergodicity; Statistical behavior and recurrence; Measure-theoretic isomorphism and factors
 2. Examples of ergodicity; mixing
 Rotations; Extensions of rotations; Expanding maps; Mixing; Hyperbolic toral automorphisms; Symbolic systems
 3. Measure-theoretic entropy
 Entropy and conditional entropy of partitions; Entropy of a measure-preserving transformation; Properties of entropy
 4. Examples of calculation of measure-theoretic entropy
 Rotations and translations; Expanding maps; Bernoulli and Markov measures; Hyperbolic toral automorphisms
5. The Variational Principle
5. Systems with smooth invariant measures and more examples
 1. Existence of smooth invariant measures
 The smooth measure class; The Perron–Frobenius operator and divergence; Criteria for existence of smooth invariant measures; Absolutely continuous invariant measures for expanding maps; The Moser Theorem
 2. Examples of Newtonian systems
 The Newton equation; Free particle motion on the torus; The mathematical pendulum; Central forces
 3. Lagrangian mechanics
 Uniqueness in the configuration space; The Lagrange equation; Lagrangian systems; Geodesic flows; The Legendre transform
 4. Examples of geodesic flows
 Manifolds with many symmetries; The sphere and the torus; Isometries of the hyperbolic plane; Geodesics of the hyperbolic plane; Compact factors; The dynamics of the geodesic flow on compact hyperbolic surfaces
5. Hamiltonian systems
 Symplectic geometry; Cotangent bundles; Hamiltonian vector fields and flows; Poisson brackets; Integrable systems
6. Contact systems
 Hamiltonian systems preserving a 1-form; Contact forms
7. Algebraic dynamics: Homogeneous and affine systems

Part 2 Local analysis and orbit growth
6. Local hyperbolic theory and its applications
 1. Introduction
 2. Stable and unstable manifolds
 Hyperbolic periodic orbits; Exponential splitting; The Hadamard–Perron Theorem; Proof of the Hadamard–Perron Theorem; The Inclination Lemma
3. Local stability of a hyperbolic periodic point
 The Hartman–Grobman Theorem; Local structural stability 260
4. Hyperbolic sets
 Definition and invariant cones; Stable and unstable manifolds; Closing Lemma and periodic orbits; Locally maximal hyperbolic sets 263
5. Homoclinic points and horseshoes
 General horseshoes; Homoclinic points; Horseshoes near homoclinic points 273
6. Local smooth linearization and normal forms
 Jets, formal power series, and smooth equivalence; General formal analysis; The hyperbolic smooth case 278
7. Transversality and Genericity 287
 1. Generic properties of dynamical systems 287
 Residual sets and sets of first category; Hyperbolicity and genericity
 2. Genericity of systems with hyperbolic periodic points 290
 Transverse fixed points; The Kupka–Smale Theorem
 3. Nontransversality and bifurcations
 Structurally stable bifurcations; Hopf bifurcations
 4. The theorem of Artin and Mazur 304
8. Orbit Growth Arising from Topology 307
 1. Topological and fundamental-group entropies 308
 2. A survey of degree theory 310
 Motivation; The degree of circle maps; Two definitions of degree for smooth maps; The topological definition of degree
 3. Degree and topological entropy 316
 4. Index theory for an isolated fixed point 318
 5. The role of smoothness: The Shub–Sullivan Theorem 323
 6. The Lefschetz Fixed-Point Formula and applications 326
 7. Nielsen theory and periodic points for toral maps 330
9. Variational Aspects of Dynamics 335
 1. Critical points of functions, Morse theory, and dynamics 336
 2. The billiard problem 339
 3. Twist maps
 Definition and examples; The generating function; Extensions; Birkhoff periodic orbits; Global minimality of Birkhoff periodic orbits 349
 4. Variational description of Lagrangian systems 365
 5. Local theory and the exponential map 367
 6. Minimal geodesics 372
 7. Minimal geodesics on compact surfaces 376

Part 3 Low-dimensional phenomena

10. Introduction: What is low-dimensional dynamics? 381
 Motivation; The intermediate value property and conformality; Very low-dimensional and low-dimensional systems; Areas of low-dimensional dynamics
11. Homeomorphisms of the Circle 387
 1. Rotation number 387
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. The Poincaré classification</td>
<td>393</td>
</tr>
<tr>
<td>Rational rotation number; Irrational rotation number; Orbit types and measurable classification</td>
<td></td>
</tr>
<tr>
<td>12. CIRCLE DIFEEOMORPHISMS</td>
<td>401</td>
</tr>
<tr>
<td>1. The Denjoy Theorem</td>
<td>401</td>
</tr>
<tr>
<td>2. The Denjoy example</td>
<td>403</td>
</tr>
<tr>
<td>3. Local analytic conjugacies for Diophantine rotation number</td>
<td>405</td>
</tr>
<tr>
<td>4. Invariant measures and regularity of conjugacies</td>
<td>410</td>
</tr>
<tr>
<td>5. An example with singular conjugacy</td>
<td>412</td>
</tr>
<tr>
<td>6. Fast-approximation methods</td>
<td>415</td>
</tr>
<tr>
<td>Conjugacies of intermediate regularity; Smooth cocycles with wild coboundaries</td>
<td></td>
</tr>
<tr>
<td>7. Ergodicity with respect to Lebesgue measure</td>
<td>419</td>
</tr>
<tr>
<td>13. TWIST MAPS</td>
<td>423</td>
</tr>
<tr>
<td>1. The Regularity Lemma</td>
<td>424</td>
</tr>
<tr>
<td>2. Existence of Aubry–Mather sets and homoclinic orbits</td>
<td>425</td>
</tr>
<tr>
<td>Aubry–Mather sets; Invariant circles and regions of instability</td>
<td></td>
</tr>
<tr>
<td>3. Action functionals, minimal and ordered orbits</td>
<td>434</td>
</tr>
<tr>
<td>Minimal action; Minimal orbits; Average action and minimal measures; Stable sets for Aubry–Mather sets</td>
<td></td>
</tr>
<tr>
<td>4. Orbits homoclinic to Aubry–Mather sets</td>
<td>441</td>
</tr>
<tr>
<td>5. Nonexistence of invariant circles and localization of Aubry–Mather sets</td>
<td>447</td>
</tr>
<tr>
<td>14. FLOWS ON SURFACES AND RELATED DYNAMICAL SYSTEMS</td>
<td>451</td>
</tr>
<tr>
<td>1. Poincaré–Bendixson theory</td>
<td>452</td>
</tr>
<tr>
<td>The Poincaré–Bendixson Theorem; Existence of transversals</td>
<td></td>
</tr>
<tr>
<td>2. Fixed-point-free flows on the torus</td>
<td>457</td>
</tr>
<tr>
<td>Global transversals; Area-preserving flows</td>
<td></td>
</tr>
<tr>
<td>3. Minimal sets</td>
<td>460</td>
</tr>
<tr>
<td>4. New phenomena</td>
<td>464</td>
</tr>
<tr>
<td>The Cherry flow; Linear flow on the octagon</td>
<td></td>
</tr>
<tr>
<td>5. Interval exchange transformations</td>
<td>470</td>
</tr>
<tr>
<td>Definitions and rigid intervals; Coding; Structure of orbit closures; Invariant measures; Minimal nonuniquely ergodic interval exchanges</td>
<td></td>
</tr>
<tr>
<td>6. Application to flows and billiards</td>
<td>479</td>
</tr>
<tr>
<td>Classification of orbits; Parallel flows and billiards in polygons</td>
<td></td>
</tr>
<tr>
<td>7. Generalizations of rotation number</td>
<td>483</td>
</tr>
<tr>
<td>Rotation vectors for flows on the torus; Asymptotic cycles; Fundamental class and smooth classification of area-preserving flows</td>
<td></td>
</tr>
<tr>
<td>15. CONTINUOUS MAPS OF THE INTERVAL</td>
<td>489</td>
</tr>
<tr>
<td>1. Markov covers and partitions</td>
<td>489</td>
</tr>
<tr>
<td>2. Entropy, periodic orbits, and horseshoes</td>
<td>493</td>
</tr>
<tr>
<td>3. The Sharkovsky Theorem</td>
<td>500</td>
</tr>
<tr>
<td>4. Maps with zero topological entropy</td>
<td>505</td>
</tr>
<tr>
<td>5. The kneading theory</td>
<td>511</td>
</tr>
<tr>
<td>6. The tent model</td>
<td>514</td>
</tr>
</tbody>
</table>
16. Smooth Maps of the Interval 519
 1. The structure of hyperbolic repellers 519
 2. Hyperbolic sets for smooth maps 520
 3. Continuity of entropy 525
 4. Full families of unimodal maps 526

Part 4 Hyperbolic Dynamical Systems

17. Survey of Examples 531
 1. The Smale attractor 532
 2. The DA (derived from Anosov) map and the Plykin attractor
 The DA map; The Plykin attractor 537
 3. Expanding maps and Anosov automorphisms of nilmanifolds 541
 4. Definitions and basic properties of hyperbolic sets for flows 544
 5. Geodesic flows on surfaces of constant negative curvature 549
 6. Geodesic flows on compact Riemannian manifolds with negative sec-
 tional curvature 551
 7. Geodesic flows on rank-one symmetric spaces 555
 8. Hyperbolic Julia sets in the complex plane 559
 Rational maps of the Riemann sphere; Holomorphic dynamics

18. Topological Properties of Hyperbolic Sets 565
 1. Shadowing of pseudo-orbits 565
 2. Stability of hyperbolic sets and Markov approximation 571
 3. Spectral decomposition and specification
 Spectral decomposition for maps; Spectral decomposition for flows; Specifi-
 cation 574
 4. Local product structure 581
 5. Density and growth of periodic orbits 583
 6. Global classification of Anosov diffeomorphisms on tori 587
 7. Markov partitions 591

19. Metric Structure of Hyperbolic Sets 597
 1. Hölder Structures 597
 The invariant class of Hölder-continuous functions; Hölder continuity of conju-
 gacies; Hölder continuity of orbit equivalence for flows; Hölder continuity and
 differentiability of the unstable distribution; Hölder continuity of the Jacobian
 2. Cohomological equations over hyperbolic dynamical systems 608
 The Livschitz Theorem; Smooth invariant measures for Anosov diffeomor-
 phisms; Time change and orbit equivalence for hyperbolic flows; Equivalence of
 torus extensions

20. Equilibrium States and Smooth Invariant Measures 615
 1. Bowen measure 615
 2. Pressure and the variational principle 623
 3. Uniqueness and classification of equilibrium states 628
 Uniqueness of equilibrium states; Classification of equilibrium states
Contents

4. Smooth invariant measures 637
Properties of smooth invariant measures; Smooth classification of Anosov dif-
feomorphisms on the torus; Smooth classification of contact Anosov flows on
3-manifolds
5. Margulis measure 643
6. Multiplicative asymptotic for growth of periodic points 651
Local product flow boxes; The multiplicative asymptotic of orbit growth

Supplement

S. **Dynamical Systems with Nonuniformly Hyperbolic Behavior**
by Anatole Katok and Leonardo Mendoza 659
1. Introduction 659
2. Lyapunov exponents 660
Cocycles over dynamical systems; Examples of cocycles; The Multiplicative
Ergodic Theorem; Oseledec–Pesin ε-Reduction Theorem; The Ruelle inequality
3. Regular neighborhoods 672
Existence of regular neighborhoods; Hyperbolic points, admissible manifolds,
and the graph transform
4. Hyperbolic measures 678
Preliminaries; The Closing Lemma; The Shadowing Lemma; Pseudo-Markov
covers; The Livschitz Theorem
5. Entropy and dynamics of hyperbolic measures 693
Hyperbolic measures and hyperbolic periodic points; Continuous measures and
transverse homoclinic points; The Spectral Decomposition Theorem; Entropy,
horseshoes, and periodic points for hyperbolic measures

Appendix

A. **Background material** 703
1. Basic topology 703
Topological spaces; Homotopy theory; Metric spaces
2. Functional analysis 711
3. Differentiable manifolds 715
Differentiable manifolds; Tensor bundles; Exterior calculus; Transversality
4. Differential geometry 727
5. Topology and geometry of surfaces 730
6. Measure theory 731
Basic notions; Measure and topology
7. Homology theory 735
8. Locally compact groups and Lie groups 738

Notes 741

Hints and Answers to the Exercises 765

References 781

Index 793