Stochastic Synchrony of Chaos in a Pulse-Coupled Neural Network with Both Chemical and Electrical Synapses Among Inhibitory Neurons

Takashi Kanamaru
kanamaru@cc.kogakuin.ac.jp
Department of Innovative Mechanical Engineering, Faculty of Global Engineering, Kogakuin University, Hachioji-city, Tokyo 193-0802, Japan

Kazuyuki Aihara
aihara@sat.t.u-tokyo.ac.jp
Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan, and ERATO, JST, Tokyo 153-8505, Japan

The synchronous firing of neurons in a pulse-coupled neural network composed of excitatory and inhibitory neurons is analyzed. The neurons are connected by both chemical synapses and electrical synapses among the inhibitory neurons. When electrical synapses are introduced, periodically synchronized firing as well as chaotically synchronized firing is widely observed. Moreover, we find stochastic synchrony where the ensemble-averaged dynamics shows synchronization in the network but each neuron has a low firing rate and the firing of the neurons seems to be stochastic. Stochastic synchrony of chaos corresponding to a chaotic attractor is also found.

1 Introduction

Since the 1980s, oscillations and synchronization of the ensemble-averaged dynamics in neuronal assemblies have been found in many areas of the brain, and their roles in information processing have been discussed (for a review, see, e.g., Gray, 1994). For example, when visual stimulation was given to cats, oscillations of 40 Hz appeared in the local field potential in the visual cortex. Moreover, when correlated inputs were given to the receptive fields of each assembly, synchronization among distant (about 7 mm) assemblies appeared (Gray & Singer, 1989). It has been proposed that such synchronization among neuronal assemblies might solve the binding problem (Gray, 1999). On the other hand, various oscillations are known to exist in the hippocampus, such as the sharp wave of 200 Hz (Buzsáki, Horváth, Urioste, Hetke, & Wise, 1992), the theta rhythm of 8 Hz (Csicsvari, Hirase, Czurko, & Buzsáki, 1998), and the gamma rhythm of 40 Hz (Bragin
et al., 1995), and the correlated firing caused by such oscillations might be related to regulation of learning in the hippocampus (Buzsáki, 2006). However, the above discussions are based on hypotheses, and possible roles and mechanisms of the oscillations and synchronization are still controversial.

Moreover, weak synchronization, where the ensemble-averaged dynamics in neuronal assemblies shows oscillations but each neuron has a low firing rate, is also known to exist in the visual cortex (Gray & Singer, 1989), the hippocampus (Buzsáki et al., 1992; Csicsvari et al., 1998; Fisahn, Pike, Buhl, & Paulsen, 1998; Whittington, Traub, Kopell, Ermentrout, & Buhl, 2000), and the cerebellar nucleo-olivary pathway (Lang, Sugihara, & Llinás, 1996). Brunel and Hansel (2006) and Tiesinga and José (2000) called such weak synchronization as stochastic synchrony. Stochastic synchrony was found both in modeling studies based on experimental data (Traub, Miles, & Wong, 1989) and in theoretical modeling studies (Brunel, 2000; Brunel & Hakim, 1999; Brunel & Hansel, 2006; Kanamaru, 2006a; Kanamaru & Sekine, 2004), and its relationship to information processing has attracted attention. One of the mechanisms of stochastic synchrony might be oscillations with small amplitudes of the ensemble-averaged dynamics in the network. Let us consider the situation where the dynamics averaged in an assembly of neurons shows an oscillation, and this oscillation becomes a feedback input to this network. If the amplitude of this feedback input is subthreshold for each neuron, the firing of each neuron becomes stochastic, and stochastic synchrony takes place (Kanamaru & Sekine, 2004). This mechanism is similar to that of stochastic resonance (Gammaitoni, Hänggi, Jung, & Marchesoni, 1998; Longtin, 1993).

To our knowledge, in modeling studies, stochastic synchrony has been realized only by periodic oscillations. On the other hand, in this study, we found stochastic synchrony that was generated by chaotic oscillations. This letter is organized as follows. In section 2, a pulse-coupled neural network is defined. This network is composed of excitatory neurons and inhibitory neurons, and their parameters such as synaptic time constants are set as asymmetric between excitatory and inhibitory populations in order to reflect biological conditions. Besides chemical synapses, we also introduce electrical synapses among the inhibitory neurons. To examine the dynamics of this network, the Fokker-Planck equation obtained in the limit of an infinite number of neurons is numerically analyzed, and the bifurcation of the system is investigated. By introducing electrical synapses, we observe chaotic oscillations with small amplitudes. In section 3, it is found that the oscillations with small amplitudes correspond to stochastic synchrony, namely, weak synchronization. If such oscillations are chaotic, stochastic synchrony of chaos appears. In section 4, the roles of types of connections between assemblies are examined. The final section provides discussions and conclusions.
2 A Network Composed of Excitatory Neurons and Inhibitory Neurons

In the following sections, we consider a pulse-coupled neural network composed of excitatory neurons with internal states $\theta^{(i)}_E$ ($i = 1, 2, \ldots, N_E$) and inhibitory neurons with internal states $\theta^{(i)}_I$ ($i = 1, 2, \ldots, N_I$) (Kanamaru, 2006b) that are represented as follows:

\[
\tau_E \dot{\theta}^{(i)}_E = (1 - \cos \theta^{(i)}_E) + (1 + \cos \theta^{(i)}_E) \times (r_E + \xi^{(i)}_E(t) + g_{EE}I_E(t) - g_{EI}I_I(t)),
\]
(2.1)

\[
\tau_I \dot{\theta}^{(i)}_I = (1 - \cos \theta^{(i)}_I) + (1 + \cos \theta^{(i)}_I) \times (r_I + \xi^{(i)}_I(t) + g_{IE}I_E(t) - g_{II}I_I(t) + g_{gap}I^{(i)}_{gap}(t)),
\]
(2.2)

\[
I_X(t) = \frac{1}{2N_X} \sum_{j=1}^{N_X} \sum_{k} \frac{1}{\kappa^X} \exp \left(-\frac{t - t^{(j)}_k}{\kappa^X} \right),
\]
(2.3)

\[
I^{(i)}_{gap}(t) = \frac{1}{N_I} \sum_{j=1}^{N_I} \sin \left(\theta^{(j)}_I(t) - \theta^{(i)}_I(t) \right),
\]
(2.4)

\[
\langle \xi^{(i)}_X(t)\xi^{(j)}_Y(t') \rangle = D \delta_{XY} \delta_{ij} \delta(t - t'),
\]
(2.5)

where X and Y each denote the excitatory assembly E or the inhibitory assembly I, $t^{(j)}_k$ is the kth firing time of the jth neuron in assembly X, and the firing time is defined as the time at which $\theta^{(j)}_X$ exceeds π in the positive direction. In addition to the connections $I_X(t)$ by chemical synapses in which the postsynaptic potential is written by an exponential function, there are connections $I^{(i)}_{gap}(t)$ with connection strength g_{gap} by electrical synapses among the inhibitory neurons. Previous experimental studies showed rich electrical synapses among inhibitory neurons in many areas of the brain such as the cortex (Galarreta & Hestrin, 1999, 2001; Gibson, Beierlein, & Connors, 1999) and the hippocampus (Fukuda & Kosaka, 2000; Katsumaru, Kosaka, Heizmann, & Hama, 1988; Strata et al., 1997; Zhang et al., 1998). The electrical synapses are realized by structures called gap junctions (Nicholls, Martin, Wallace, & Fuchs, 2001), and such connections correspond to the diffusive couplings in physical systems. It is known that they facilitate synchronous firing among neurons (Ermentrout, 2006).

Note that the model of neurons with $\dot{\theta} = (1 - \cos \theta) + (1 + \cos \theta)r$ is called the theta neuron model (Ermentrout & Kopell, 1986; Ermentrout, 1996), and this is the canonical model of class 1 neurons. Without the electrical synapses, our network is based on the canonical model of class 1
networks connected by chemical synapses with exponential functions (Izhikevich, 1999, 2000). For simplicity, the restrictions, $g_{EE} = g_{II} \equiv g_{int}$ and $g_{EI} = g_{IE} \equiv g_{ext}$, are placed, where g_{int} is the internal connection strength in an assembly and g_{ext} is the external connection strength between excitatory and inhibitory assemblies. Note that the introduction of the electrical synapses to the theta model is not straightforward because the transformation of the variable of the membrane potential to phase θ is singular when the neuron fires (Ermentrout, 2006). We use the conventional definition of the diffusive coupling for simplicity. The result similar to that obtained in this letter was also found (data not shown) using the class 1 Morris-Lecar neurons (Ermentrout, 1996; Morris & Lecar, 1981); therefore, our results might be found widely in the networks of class 1 neurons.

The membrane time constants are set as $\tau_E = 1$ and $\tau_I = 0.5$ in order to take into account the physiological fact that fast-spiking cells are dominant among the inhibitory neurons in the cortex. The synaptic time constants are set as $\kappa_E = 1$ and $\kappa_I = 5$.

In the absence of inputs $I_X(t)$ from assembly X and noise $\xi^{(i)}_X(t)$, a single neuron shows a self-oscillation when $r_X > 0$. When $r_X < 0$, this neuron becomes an excitable system with a stable equilibrium point defined by

$$\theta_0 = -\arccos \frac{1 + r_X}{1 - r_X},$$ \hspace{1cm} (2.6)$$

in which θ_0 is close to zero for $r_X \sim 0$. In the following, we use values of the parameter $r_X < 0$ and consider the dynamics of a network of excitatory neurons.

As shown in appendix A, the ensemble-averaged dynamics in this network can be analyzed using the Fokker-Planck equation (Gerstner & Kistler, 2002; Kuramoto, 1984), which is obtained in the limit of $N_E, N_I \to \infty$. When there are no correlations of firing among neurons in the network, the stable solution of the Fokker-Planck equation is the equilibrium state. When there are some correlations of firing among neurons, the solution is time-varying, namely, the ensemble-averaged dynamics in the network can be represented by a limit cycle, a chaotic attractor, and so on. In the following, when the solution of the Fokker-Planck equation is time varying, we consider the firing of the neurons as synchronous.

Bifurcation sets of the network obtained by numerical analyses of the Fokker-Planck equation (Kanamaru, 2006a, 2006b), based on the method given in appendix B, are shown in Figure 1. The noise intensity D and the external connection strength g_{ext} are chosen as the bifurcation parameters. The bifurcation set for a network without electrical synapses is shown in Figure 1A. Generally synchronous firing of neurons is observed when the values of D and g_{ext} are in the area enclosed by the Hopf and homoclinic (or saddle node on limit cycle) bifurcation lines. A similar analysis was presented in Kanamaru (2006b), where the membrane time constants and
Figure 1: Bifurcation sets in the \((D, g_{\text{ext}})\) plane for (A) \(g_{\text{gap}} = 0\) and (B) \(g_{\text{gap}} = 0.15\). The excitatory and inhibitory neurons are connected by chemical synapses. Synchronous firing of neurons is generally observed when the values of \(D\) and \(g_{\text{ext}}\) are in the area enclosed by the Hopf and HB (or SNL) bifurcation lines. In B, when the electrical synapses are introduced among the inhibitory neurons, synchronous firing exists even when \(g_{\text{ext}} > g_{\text{int}} = 5\). The solid, dotted, and dash-dotted lines denote the Hopf, saddle node, and homoclinic bifurcations, respectively. The areas where a chaotic solution exists are roughly sketched. SN: saddle node bifurcation; SNL: saddle node on limit cycle bifurcation; HB: homoclinic bifurcation.

the synaptic time constants were set as uniform. On the other hand, in this study, the time constants of the excitatory and inhibitory assemblies are set to be asymmetric: \(\tau_E = 1\), \(\tau_I = 0.5\), \(k_E = 1\), and \(k_I = 5\). With this setting, it was found that the range of the parameter values where synchronous firing
exists became narrower than that in the previous analysis. However, the structure of the bifurcations was almost the same as that of the previous analysis; therefore, it can be concluded that the structure of the bifurcations is robust against changes in the membrane time constants and synaptic time constants. It is also observed that chaos exists near the homoclinic bifurcation set, but the area is very narrow because chaos disappears by the crisis.

It should be also noted that synchronous firing can be observed only when $g_{ext} < g_{int} = 5$, and this fact is in agreement with a previous study (Kanamaru, 2006b). Let us consider the dynamics in a network with large g_{ext} by examining the instantaneous firing rates J_E and J_I of the excitatory and inhibitory assemblies, respectively, which can be calculated using the Fokker-Planck equation as shown in appendix A. Generally J_E and J_I decrease as g_{ext} increases; therefore, the equilibrium point (J_E, J_I) approaches the origin. The dependence of the equilibrium of J_E on g_{ext} is shown in Figure 2A, where J_E decreases as g_{ext} increases.

When electrical synapses were introduced among the inhibitory neurons, the area where synchronous firing can be observed widened, and synchronous firing was observed even for $g_{ext} > g_{int} = 5$, as shown in Figure 1B. Synchronous firing in a network with $g_{ext} > g_{int}$ was also observed when the bifurcation parameters r_E and r_I were set as asymmetric (Kanamaru, 2006a). This similarity might have arisen because electrical synapses only in the inhibitory assembly introduced asymmetry to the network. Moreover, in Figure 1B, it is also observed that the area where a chaotic solution exists widened by introducing the electrical synapses. The dependence of J_E on g_{ext} in a network with $g_{gap} = 0.15$ is shown in Figure 2B. Similar to Figure 2A, J_E tended to decrease as g_{ext} increased. Moreover, both periodic solutions and chaotic solutions existed in networks with g_{ext} of up to 4.5, and periodic solutions appeared again in networks with $g_{ext} > 8.35$. It is also observed that in networks with relatively large g_{ext}, the periodic oscillations and the chaotic oscillations had small amplitudes near the origin. Typical chaotic oscillations in the (J_E, J_I) plane with $g_{ext} = 3.9$ or $g_{ext} = 4.4$ are shown in Figures 3A and 3B, respectively. Note that the chaotic attractor in Figure 3B is smaller than that in Figure 3A. This is because the value of g_{ext} in Figure 3B is larger than that in Figure 3A.

3 Stochastic Synchrony of Chaos

In the previous section, it was found that introduction of electrical synapses in the inhibitory assembly had the following effects on the network. First, the ranges of the parameters where periodically or chaotically synchronized firing can be observed widened. Second, the periodic or chaotic solution of the network persisted even when g_{ext} was relatively large, and this solution tended to have small amplitudes near the origin.
Figure 2: Dependence of the instantaneous firing rate J_E of the excitatory assembly on g_{ext}. The solid and dotted lines denote stable and unstable equilibria, respectively. When a stable limit cycles or a chaotic attractor exists in the network, their maxima and minima are also plotted. The values of the parameters are set as (A) $D = 0.006$ and $g_{gap} = 0$ and (B) $D = 0.006$ and $g_{gap} = 0.15$. The inset in B shows an enlargement in the range $6 \leq g_{ext} \leq 10$, where the vertical axis was expanded.

Note that oscillations with small amplitudes close to the origin correspond to weakly synchronized firing (Kanamaru, 2006a; Kanamaru & Sekine, 2004), where the ensemble-averaged dynamics shows synchronization in the network but each neuron has a low firing rate and the firing of each neuron seems to be stochastic. In Brunel and Hansel (2006) and
Figure 3: Chaotic attractors in the \((J_E, J_I)\) plane for \(g_{\text{int}} = 5\) and \(g_{\text{gap}} = 0.15\). The values of the other parameters are set as (A) \(g_{\text{ext}} = 3.9\) and \(D = 0.006\) and (B) \(g_{\text{ext}} = 4.4\) and \(D = 0.0045\). It is observed that the attractor decreases in size as \(g_{\text{ext}}\) increases.

Tiesinga and José (2000), similar phenomena were called stochastic synchrony. To our knowledge, stochastic synchrony in previous studies was based on periodic oscillations, and stochastic synchrony that corresponds to chaotic oscillations—in other words, stochastic synchrony of chaos—had not been observed. Here we present the stochastic synchrony of chaos observed in our network.

First, the synchronous firing that corresponds to the chaotic attractor shown in Figure 3A is shown in Figure 4. The trajectory shown in Figure 3A is a solution of the Fokker-Planck equation, which holds in the limit of an
Figure 4: The firing of neurons in a finite network with $N_E = N_I = 1000$, $g_{int} = 5$, $g_{ext} = 3.9$, $g_{gap} = 0.15$, and $D = 0.006$. Note that the values of the parameters are the same as those used in Figure 3A. (A, C) Temporal change in the instantaneous firing rate of the excitatory assembly and the inhibitory assembly, respectively. (B, D) Raster plot of the firing times of the neurons in the excitatory assembly and the inhibitory assembly, respectively. Each excitatory neuron fires at least once at each peak of J_E; therefore, stochastic synchrony is not observed in the excitatory assembly. On the other hand, some inhibitory neurons do not fire even when J_I takes peak values, and this phenomenon is a sign of stochastic synchrony.
infinite number of neurons, and the dynamics shown in Figure 4 is the behavior of a finite network with \(N_E = N_I = 1000 \). The stochastic differential equations 2.1 and 2.2 are integrated numerically in Stratonovich’s sense based on the method in Klauder and Petersen (1985). The instantaneous firing rate \(J_X \) in assembly \(X \) is defined as

\[
J_X(t) = \sum_{i=1}^{N_X} \sum_{j} \Theta(t - t_j^{(i)}),
\]

where \(d = 1.0 \). As shown in Figure 4B, each excitatory neuron fires at least once at each peak of \(J_E \). Thus, stochastic synchrony is not observed in the excitatory neurons in the network shown in Figure 4B. To quantify this fact, we calculated the power spectrum \(P_X(f) \) of \(J_E(t) \), defined by

\[
P_X(f) = \frac{1}{N} \sum_{j=1}^{N} \frac{1}{T} \left| \int_{t_j}^{t_j+T} J_X(t)e^{-2\pi if t} dt \right|^2,
\]

where \(X = E \) or \(I \), \(t_1 = 0 \), \(t_{j+1} = t_j + T \), \(T = 2048 \), and \(N = 21 \). Note that the mean value of \(N \) samples is calculated to obtain smooth \(P_X(f) \), and the frequency \(f \) has an order of \(1/t \) although both \(f \) and \(t \) are dimensionless in our model. \(P_E(f) \) is shown in Figure 6A, and it is observed that it has a broad spectrum because chaos and noise coexist in \(J_E(t) \). Note that the peaks at small frequencies \(f = 0.018 \) and \(f = 0.036 \) denote the slow dynamics of \(J_E(t) \), and the peaks at large frequencies \(f = 0.075 \) and \(f = 0.1 \) denote the fast dynamics of \(J_E(t) \); therefore, the mean frequency \(f_1 \) of the firing of excitatory neurons is calculated as \(f_1 = 0.041 \). Because \(f_1 \) is close to \(f_{all} \), it can be concluded that stochastic synchrony of chaos does not take place in the dynamics of the excitatory assembly shown in Figures 4A and 4B. On the other hand, some inhibitory neurons do not fire even when \(J_I \) takes peak values as shown in Figure 4D. This phenomenon is a sign of stochastic synchrony. The mean frequency \(f_{all} \) of \(J_I(t) \) is calculated as \(f_{all} = 0.034 \). Because \(f_1 \) is smaller than \(f_{all} \), it can be concluded that stochastic synchrony of chaos takes place in the dynamics of the inhibitory assembly shown in Figures 4C and 4D.

The synchronous firing that corresponds to the chaotic attractor shown in Figure 3B is shown in Figure 5. It is observed that the firing of both the
Figure 5: The firing of neurons in a finite network with $N_E = N_I = 1000$, $g_{int} = 5$, $g_{ext} = 4.4$, $g_{gap} = 0.15$, and $D = 0.0045$. Note that the values of the parameters are the same with those used in Figure 3B. (A, C) Temporal change in the instantaneous firing rate of the excitatory assembly and the inhibitory assembly, respectively. (B, D) Raster plot of the firing of the neurons in the excitatory assembly and the inhibitory assembly, respectively. Stochastic synchrony of chaos is observed in both assemblies.
excitatory neurons and that of the inhibitory ones is sparse and looks random and that very few neurons fire even when J_E and J_I take peak values. These firing patterns represent stochastic synchrony that corresponds to a chaotic attractor; therefore, we call these firing patterns stochastic synchrony of chaos. The power spectra of $J_E(t)$ and $J_I(t)$, the mean frequency f_{all} of each assembly, and the frequency f_1 of the firing of each neuron are shown in Figure 6B. In both assemblies, it is observed that f_1 is smaller than f_{all}; therefore, it can be concluded that stochastic synchrony of chaos takes place in both the assemblies.

Stochastic synchrony is realized when the oscillations of the ensemble-averaged dynamics in the network have small amplitudes, as shown in Figure 3B. In such a case, the amplitude of the feedback input from the network is also small, and it causes subthreshold oscillations for each neuron in the network and stochastic synchrony (Kanamaru & Sekine, 2004). This mechanism is similar to that of stochastic resonance (Gammaitoni et al., 1998; Longtin, 1993), which is realized when a small periodic signal and an appropriate amount of noise are injected to an excitable element. In our model, the signal and noise are defined by 2.3 and 2.5, respectively, and the periodic or chaotic signal is generated by the internal dynamics of the network.

4 Roles of Types of Connections Among Neuronal Assemblies

In the previous sections, various kinds of synchronous firing, including chaotic synchrony, were found in the network of excitatory and inhibitory neurons by regulating the external connection strength g_{ext}. In this section, the roles of the connection strengths g_{EE}, g_{IE}, g_{EI}, and g_{II} are examined.

In the previous sections, the restrictions $g_{EE} = g_{II} = g_{int}$ and $g_{IE} = g_{EI} = g_{ext}$ were placed in order to analyze the properties of the synchronous firing in the network. In this section, we fix g_{int} and g_{ext} at values at which synchronous firing exists, and then we change the value of only one of g_{EE}, g_{IE}, g_{EI}, or g_{II} while keeping the other three values fixed. An analysis of the dependence of the average $\langle J_E \rangle$ of J_E over time and the variance $\text{Var}(J_E)$ of J_E on each connection strength can elucidate the roles of each connection. Particularly, the variance $\text{Var}(J_E)$ takes the value close to zero when the firing pattern of neurons is fully asynchronous, and it takes nonzero values when the firing of each neuron is synchronized. Thus, it can be used to measure the degree of synchronization.

First, let us analyze the case where there is no electrical synapse in the network ($g_{gap} = 0$). The parameters are initially fixed at $g_{EE} = g_{II} = g_{int} = 5$, $g_{IE} = g_{EI} = g_{ext} = 3$, and $D = 0.006$, where periodically synchronized firing is observed in the network. The dependence of $\langle J_E \rangle$ and $\text{Var}(J_E)$ on the connection strength was analyzed by changing the value of one connection strength; the results are shown in Figures 7A and 7B, respectively. Note that the vertical axis in Figure 7B is log-scaled, and $\text{Var}(J_E)$ takes the value
Figure 6: The power spectra $P_E(f)$ and $P_I(f)$ of $J_E(t)$ and $J_I(t)$ in the case where (A) $g_{ext} = 3.9$ and $D = 0.006$ and (B) $g_{ext} = 4.4$ and $D = 0.0045$, which correspond to the firing patterns shown in Figures 4 and 5, respectively. Note that the frequency f has an order of $1/t$, although both f and t are dimensionless in our model. The white arrows show the positions of the periodic structures. The positions of the mean frequency f_{all} of the assembly and the frequency f_i of the firing of each neuron are indicated by thin vertical arrows. The stochastic synchrony of chaos is observed in the inhibitory assembly in A, and in both assemblies in B.

close to zero when there is no plot. The following properties are observed in Figure 7. First, synchronous firing disappears (i.e., $\text{Var}(J_E) \sim 0$) when one connection strength is set to zero. In other words, all four types of connections are required for a genesis of synchronization. Second, strong
Figure 7: The dependence of (A) the average $\langle J_E \rangle$ of J_E over time and (B) the variance $\text{Var}(J_E)$ of J_E on each connection strength g_{EE}, g_{II}, g_{IE}, or g_{EI} in a network without electrical synapses. The initial values of the parameters are set as $g_{EE} = g_{II} = 5$, $g_{IE} = g_{EI} = 3$, $g_{gap} = 0$, and $D = 0.006$. The value of only one connection strength, g_{EE}, g_{II}, g_{IE}, or g_{EI}, was varied.

synchronization is observed when g_{IE} and g_{EI} are smaller than g_{EE} and g_{II}. Third, adjustment of the values of g_{IE} and g_{EI} is required to observe synchronous firing because $\text{Var}(J_E)$ takes nonzero values only in some ranges of g_{IE} and g_{EI}, as shown in Figure 7B. On the other hand, as for g_{EE} and g_{II}, synchronous firing can be observed with sufficiently strong g_{EE} and g_{II}. Fourth, in networks with large g_{EE}, $\langle J_E \rangle$ increases, as g_{EE} increases, as shown in Figure 7A. On the other hand, in networks with large g_{II}, $\langle J_E \rangle$ remained at a nearly constant value. These properties of synchronous firing also held for different values of g_{int}, g_{ext}, and D.

Next, we analyze the roles of the connections when there are electrical synapses in the network ($g_{gap} = 0.15$). The parameters are initially fixed at $g_{EE} = g_{II} = g_{int} = 5$, $g_{IE} = g_{EI} = 4.4$, and $D = 0.0045$, where stochastic synchrony of chaos is observed in the network. Note that these values of the parameters are the same with those used in Figures 3B and 5. The dependence of $\langle J_E \rangle$ and $\text{Var}(J_E)$ on each connection strength is shown
Figure 8: The dependence of (A) the average $\langle J_E \rangle$ of J_E over time and (B) the variance $\text{Var}(J_E)$ of J_E on each connection strength g_{EE}, g_{II}, g_{IE}, or g_{EI} in a network with electrical synapses. The initial values of the parameters are set as $g_{EE} = g_{II} = 5$, $g_{IE} = g_{EI} = 4.4$, $g_{gap} = 0.15$, and $D = 0.0045$. Plateau-like structures that indicate stochastic synchrony are observed in both figures for systems with small g_{II}, large g_{IE}, or large g_{EI}.

in Figures 8A and 8B, respectively. There are similarities and differences compared with the case of $g_{gap} = 0$ in Figure 7. The plateau-like structures of $\text{Var}(J_E)$ observed for small g_{II}, large g_{IE}, or large g_{EI} show stochastic synchrony. This phenomenon can be understood as follows. Stochastic synchrony can be observed when g_{ext} is large, as shown in Figure 1B. Therefore, it is natural that stochastic synchrony exists when g_{IE} or g_{EI} is large. Moreover, Figure 8 shows that a decrease in g_{II} has similar effects as an increase in g_{ext} in the network.

5 Discussion and Conclusion

In this study, we analyzed the synchronous firing in a pulse-coupled neural network of excitatory and inhibitory neurons connected by chemical
synapses. Electrical synapses among the inhibitory neurons were introduced to this network. The bifurcation structure of the ensemble-averaged dynamics of neurons in the network was analyzed with the Fokker-Planck equation that is obtained in the limit of an infinite number of neurons. It was concluded that by introducing the electrical synapses to the network, the range of the parameter values where periodically or chaotically synchronized firing can be observed widened. Moreover, the periodic or chaotic solution observed in the network with electrical synapses persisted even for networks with large g_{ext}, and it was found that the solutions for networks with large g_{ext} had small amplitudes near the origin. The oscillations with small amplitudes near the origin corresponded to stochastic synchrony where the ensemble-averaged dynamics shows synchronization in the network but each neuron has a low firing rate and the firing seems to be stochastic. In this study, we found stochastic synchrony that corresponded to a chaotic attractor, and we called this phenomenon stochastic synchrony of chaos.

The roles of the four types of connections among excitatory and inhibitory assemblies g_{EE}, g_{IE}, g_{EI}, and g_{II} were also investigated. It was found that in a network without electrical synapses, all four types of connections were required for a genesis of synchronous firing. This result seems to contradict the previous finding that the pulse-coupled self-oscillating, neurons can perfectly or partially synchronize with each other without inhibitory neurons (Hansel, Mato, & Meunier, 1995; Kuramoto, 1991; Mirollo & Strogatz, 1990; Tsodyks, Mitkov, & Sompolinsky, 1993; van Vreeswijk, 1996) or without excitatory neurons (Golomb & Rinzel, 1993; Kopell, 2000; van Vreeswijk, Abbott, & Ermentrout, 1994). This discrepancy is caused by the fact that our network is composed of excitable, not self-oscillating, neurons. In addition, it was found that adjustment of g_{EI} and g_{IE} was required. As to networks with electrical synapses, stochastic synchrony was observed in networks with small g_{II}, large g_{IE}, or large g_{EI}.

Although stochastic synchrony is often observed in sparsely connected networks (Brunel, 2000; Brunel & Hakim, 1999; Traub et al., 1989), all neurons in our network were connected with each other, and the connections were uniform. Thus, it can be concluded that randomness of connections is not required for a genesis of stochastic synchrony. Moreover, there are cases in which stochastic synchrony is observed in both the excitatory and the inhibitory assembly (see Figures 5B and 5D). This was observed because the peak values of both J_E and J_I were small. It is inferred that there would be cases where stochastic synchrony is observed in either the excitatory or the inhibitory assembly according to the shape of the attractor.

When stochastic synchrony exists in a network, the contribution of a single neuron in the network to the synchronization is small. Therefore, this neuron might also contribute to form other synchronous networks simultaneously. If such dynamics is realized, they can be interpreted as the stochastic realization of the dynamical cell assemblies (Fujii, Ito, Aihara,
Ichinose, & Tsukada, 1996; Hebb, 1949). Investigation of such dynamics is an important future problem.

Appendix A: The Fokker-Planck Equation for the System

To analyze the dynamics of the network, we use the Fokker-Planck equations (Gerstner & Kistler, 2002; Kuramoto, 1984), which are represented as

\[
\frac{\partial n_E}{\partial t} = -\frac{\partial}{\partial \theta_E}(A_E n_E) + \frac{D}{2} \frac{\partial}{\partial \theta_E} \left\{ B_E \frac{\partial}{\partial \theta_E} (B_E n_E) \right\},
\]
\frac{\partial n_I}{\partial t} = -\frac{\partial}{\partial \theta_I}(A_I n_I) + \frac{D}{2} \frac{\partial}{\partial \theta_I} \left\{ B_I \frac{\partial}{\partial \theta_I} (B_I n_I) \right\},
\]

(A.1) (A.2)

\[
A_E(\theta_E, t) = \frac{1}{\tau_E} (1 - \cos \theta_E) + \frac{1}{\tau_E} (1 + \cos \theta_E)
\times (r_E + g_{EE} I_E(t) - g_{EI} I_I(t)),
\]

(A.3)

\[
A_I(\theta_I, t) = \frac{1}{\tau_I} (1 - \cos \theta_I) + \frac{1}{\tau_I} (1 + \cos \theta_I)
\times (r_I + g_{IE} I_E(t) - g_{II} I_I(t) + g_{gap} I_{gap}(\theta_I, t)),
\]

(A.4)

\[
B_E(\theta_E, t) = \frac{1}{\tau_E} (1 + \cos \theta_E),
\]

(A.5)

\[
B_I(\theta_I, t) = \frac{1}{\tau_I} (1 + \cos \theta_I),
\]

(A.6)

\[
I_{gap}(\theta_I, t) = \langle \sin \theta_I \rangle \cos \theta_I - \langle \cos \theta_I \rangle \sin \theta_I,
\]

(A.7)

\[
\langle f(\theta_I) \rangle = \int_0^{2\pi} f(\theta_I) n_I(\theta_I, t) \, d\theta_I,
\]

(A.8)

for the normalized number densities of excitatory and inhibitory neurons, in which

\[
n_E(\theta_E, t) \equiv \frac{1}{N_E} \sum \delta \left(\theta_E^{(i)} - \theta_E \right),
\]

(A.9)

\[
n_I(\theta_I, t) \equiv \frac{1}{N_I} \sum \delta \left(\theta_I^{(i)} - \theta_I \right),
\]

(A.10)

in the limit of \(N_E, N_I \to \infty \). The probability flux for each assembly is defined as

\[
J_E(\theta_E, t) = A_E n_E - \frac{D}{2} B_E \frac{\partial}{\partial \theta_E} (B_E n_E),
\]

(A.11)

\[
J_I(\theta_I, t) = A_I n_I - \frac{D}{2} B_I \frac{\partial}{\partial \theta_I} (B_I n_I),
\]

(A.12)
respectively. In the limit of \(N_X \to \infty \), \(I_X(t) \) in equation 2.3 follows the following differential equation,

\[
\dot{I}_X(t) = -\frac{1}{\kappa_X} \left(I_X(t) - \frac{1}{2} \bar{I}_X(t) \right), \tag{A.13}
\]

where \(\bar{I}_X(t) \equiv \bar{I}_X(\pi, t) \) is the probability flux at \(\theta_X = \pi \).

By integrating the Fokker-Planck equations A.1 and A.2 and the differential equation A.13 simultaneously, the dynamics of the network that is governed by equations 2.1 and 2.2 can be analyzed.

Appendix B: Numerical Integration of the Fokker-Planck Equations

In this section, we provide a method for the numerical integration of the Fokker-Planck equations A.1 and A.2. Because the normalized number densities given by equations A.9 and A.10 are \(2\pi \)-periodic functions of \(\theta_E \) and \(\theta_I \), respectively, they can be expanded as

\[
n_E(\theta_E, t) = \frac{1}{2\pi} + \sum_{k=1}^{\infty} \left(a_{E}^k(t) \cos(k\theta_E) + b_{E}^k(t) \sin(k\theta_E) \right), \tag{B.1}
\]

\[
n_I(\theta_I, t) = \frac{1}{2\pi} + \sum_{k=1}^{\infty} \left(a_{I}^k(t) \cos(k\theta_I) + b_{I}^k(t) \sin(k\theta_I) \right), \tag{B.2}
\]

and, by substituting them, equations A.1 and A.2 are transformed into a set of ordinary differential equations of \(a_{X}^k \) and \(b_{X}^k \) as follows:

\[
\frac{d a_{X}^k}{dt} = -(r_X + I_X + 1) \frac{k}{\tau_X} b_{X}^k - (r_X + I_X - 1) \frac{k}{2\tau_X} \left(b_{X}^k - b_{X}^{k+1} \right) - \frac{Dk}{8\tau_X^2} f(a_{X}^k) + \frac{\pi G_{gap} k}{4\tau_X} \left(- b_{1} g_{1}(b_{X}^k) + a_{1} g_{2}(a_{X}^k) \right) \delta_{XI}, \tag{B.3}
\]

\[
\frac{d b_{X}^k}{dt} = (r_X + I_X + 1) \frac{k}{\tau_X} a_{X}^k + (r_X + I_X - 1) \frac{k}{2\tau_X} \left(a_{X}^k - a_{X}^{k+1} \right) - \frac{Dk}{8\tau_X^2} f(b_{X}^k) + \frac{\pi G_{gap} k}{4\tau_X} \left(b_{1} g_{1}(a_{X}^k) + a_{1} g_{2}(b_{X}^k) \right) \delta_{XI}, \tag{B.4}
\]

\[
f(x_k) = (k - 1)x_{k-2} + 2(2k - 1)x_{k-1} + 6k x_k + 2(2k + 1)x_{k+1} + (k + 1)x_{k+2} \tag{B.5}
\]

\[
g_{1}(x_k) = x_{k-2} + 2x_{k-1} + 2x_k + 2x_{k+1} + x_{k+2} \tag{B.6}
\]

\[
g_{2}(x_k) = x_{k-2} + 2x_{k-1} - 2x_{k+1} - x_{k+2} \tag{B.7}
\]

\[
I_X \equiv g_{XE} I_E - g_{XI} I_I \tag{B.8}
\]
\[a_0^{(X)} \equiv \frac{1}{\pi}, \quad (B.9) \]
\[b_0^{(X)} \equiv 0, \quad (B.10) \]
\[a_{-n}^{(X)} \equiv a_n^{(X)}, \quad (B.11) \]
\[b_{-n}^{(X)} \equiv -b_n^{(X)}, \quad (B.12) \]

where \(X = E \) or \(I \). when a vector \(x = (I_E, I_I, a_1^E, b_1^E, a_1^I, b_1^I, a_2^E, b_2^E, a_2^I, b_2^I, \ldots)^T \), is used, the ordinary differential equations \(\dot{x} = f(x) \) are defined by equations A.13, B.3, and B.4. When these ordinary differential equations are integrated numerically, the time series of the probability fluxes \(J_E \) and \(J_I \) are obtained. For numerical calculations, each Fourier series is truncated at the first 40 or 60 terms.

The bifurcation sets of the Hopf bifurcation and the saddle-node bifurcation in Figure 1 were obtained as follows. A stationary solution \(x_s \) was numerically obtained by the Newton method (Press, Flannery, Teukolsky, & Vetterling, 1988), and the eigenvalues of the Jacobian matrix \(Df(x_s) \) that had been numerically obtained by using the QR algorithm (Press et al., 1988), were examined to find the bifurcation sets. The bifurcation sets of the homoclinic bifurcation were obtained by observing the long-time behaviors of the solutions of \(\dot{x} = f(x) \).

Appendix C: Derivation of the Mean Frequency of the Assembly

In this section, we provide a method on the numerical calculation of the mean frequency \(f_{all} \) of the assembly in the network with a finite number of neurons. As shown in Figures 4A, 4C, 5A, and 5C, \(J_X(t) \) (\(X = E \) or \(I \)) of the finite network is noisy. To eliminate noise, we use the the low-pass filter written by

\[\dot{x}_{out} = -\frac{1}{\tau}x_{out} + \frac{1}{\tau}x_{in}, \quad (C.1) \]

where \(x_{in} \) and \(x_{out} \) are the input and the output of this filter, respectively, and its cutoff frequency is defined by

\[f_c = \frac{1}{2\pi \tau}. \quad (C.2) \]

The cutoff frequency \(f_c \) is set at the maximal frequency where the peak of the power spectrum is observed: \(f_c = 0.1 \) for \(g_{ext} = 3.9 \) and \(D = 0.006 \) in Figure 6A and \(f_c = 0.06 \) for \(g_{ext} = 4.4 \) and \(D = 0.0045 \) in Figure 6B. After applying this low-pass filter to \(J_X(t) \) twice, we count the number of peaks of \(J_X(t) \). \(J_X(t^*) \) at \(t = t^* \) is considered a peak when two conditions \(J_X(t^*) > J_X(t^* \pm \Delta t) \) and \(J_X(t^*) > \langle J_X(t) \rangle \) are satisfied, where \(\Delta t \) is the time.
step of data and $\langle J_X(t) \rangle$ is the time average of $J_X(t)$. The second condition was required to avoid spurious peaks caused by noise. After counting the peaks, we define the mean frequency f_{all} of the assembly as the number of peaks of $J_X(t)$ per unit time.

Acknowledgments

This study was partially supported by a Grant-in-Aid for Encouragement of Young Scientists (B) (No. 17700226) and a Grant-in-Aid for Scientific Research on Priority Areas (No. 17022012) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

Received May 8, 2007; accepted August 30, 2007.
2. Takashi Kanamaru, Kazuyuki Aihara. 2010. Roles of Inhibitory Neurons in Rewiring-Induced Synchronization in Pulse-Coupled Neural Networks. *Neural Computation* 22:5, 1383-1398. [Abstract] [Full Text] [PDF] [PDF Plus]
