The determinant of a triangular matrix is the sum of the elements on the main diagonal.
\[u = \begin{bmatrix} 3 \\ 0 \end{bmatrix} \text{ and } \mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}. \]
Compute the area of the parallelogram determined by \(\mathbf{u}, \mathbf{v}, \mathbf{u} + \mathbf{v}, \) and \(\mathbf{0} \), and compute determinant of \([\mathbf{u} \ \mathbf{v}]\). How do they compare? Replace first entry of \(\mathbf{v} \) by an arbitrary number \(x \), and repeat the item. Draw a picture and explain what you find.
\[\mathbf{v} = \begin{bmatrix} a \\ b \end{bmatrix} \text{ and } \mathbf{v} = \begin{bmatrix} c \\ 0 \end{bmatrix}, \text{ where } a, b, c \text{ are positive (for simplicity). Compute the area of the parallelogram determined by } \mathbf{u}, \mathbf{v}, \mathbf{u} + \mathbf{v}, \text{ and } \mathbf{0}, \text{ and compute the determinants of matrices } [\mathbf{u} \ \mathbf{v}] \text{ and } [\mathbf{v} \ \mathbf{u}] \text{. Draw a picture and explain what you find.} \]

Is it true that \(\det(\mathbf{A} + \mathbf{B}) = \det(\mathbf{A}) + \det(\mathbf{B})? \) To find random matrices \(5 \times 5 \) matrices \(\mathbf{A} \) and \(\mathbf{B} \), and compute \(\det(\mathbf{A} + \mathbf{B}) = \det(\mathbf{A}) - \det(\mathbf{B}). \) (Refer to Exercise 37 in Section 2.1.) Repeat the calculations for three other pairs of \(n \times n \) matrices, for various values of \(n \). Report your results.

44. [M] Is it true that \(\det(\mathbf{A} \mathbf{B}) = (\det(\mathbf{A}))(\det(\mathbf{B}))? \) Experiment with four pairs of random matrices as in Exercise 43, and make a conjecture.

45. [M] Construct a random \(4 \times 4 \) matrix \(\mathbf{A} \) with integer entries between \(-9\) and \(9\), and compare \(\det(\mathbf{A}) \) with \(\det(\mathbf{A}^T) \), \(\det(-\mathbf{A}) \), \(\det(2\mathbf{A}) \), and \(\det(10\mathbf{A}) \). Repeat with two other random \(4 \times 4 \) integer matrices, and make conjectures about how these determinants are related. (Refer to Exercise 36 in Section 2.1.) Then check your conjectures with several random \(5 \times 5 \) and \(6 \times 6 \) integer matrices. Modify your conjectures, if necessary, and report your results.

46. [M] How is \(\det(\mathbf{A}^{-1}) \) related to \(\det(\mathbf{A})? \) Experiment with random \(n \times n \) integer matrices for \(n = 4, 5, \) and \(6 \), and make a conjecture. Note: In the unlikely event that you encounter a matrix with a zero determinant, reduce it to echelon form and discuss what you find.

SOLUTION TO PRACTICE PROBLEM

Take advantage of the zeros. Begin with a cofactor expansion down the third column to obtain a \(3 \times 3 \) matrix, which may be evaluated by an expansion down its first column.
\[
\begin{vmatrix}
5 & -7 & 2 & 2 \\
0 & 3 & 0 & -4 \\
-5 & -8 & 0 & 3 \\
0 & 5 & 0 & -6
\end{vmatrix} = (-1)^{1+3} \begin{vmatrix}
0 & 3 & -4 \\
-5 & -8 & 3 \\
0 & 5 & -6
\end{vmatrix} = 2 \cdot (-1)^{2+1}(-5) \begin{vmatrix}
3 & -4 \\
5 & -6
\end{vmatrix} = 20
\]
The \((-1)^{2+1}\) in the next-to-last calculation came from the \((2, 1)\)-position of the \(-5\) in the \(3 \times 3\) determinant.

PROPERTIES OF DETERMINANTS

The secret of determinants lies in how they change when row operations are performed. The following theorem generalizes the results of Exercises 19-24 in Section 3.1. The proof is at the end of this section.

THEOREM 3

Row Operations

Let \(\mathbf{A} \) be a square matrix.

a. If a multiple of one row of \(\mathbf{A} \) is added to another row to produce a matrix \(\mathbf{B} \), then \(\det(\mathbf{B}) = \det(\mathbf{A}) \).

b. If two rows of \(\mathbf{A} \) are interchanged to produce \(\mathbf{B} \), then \(\det(\mathbf{B}) = -\det(\mathbf{A}) \).

c. If one row of \(\mathbf{A} \) is multiplied by \(k \) to produce \(\mathbf{B} \), then \(\det(\mathbf{B}) = k \cdot \det(\mathbf{A}) \).

The following examples show how to use Theorem 3 to find determinants efficiently.
EXAMPLE 2. Compute \(\det A \), where \(A = \begin{bmatrix} 1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0 \end{bmatrix} \).

Solution: The strategy is to reduce \(A \) to echelon form and then to use the fact that the determinant of a triangular matrix is the product of the diagonal entries. The first two row replacements in column 1 do not change the determinant:

\[
\det A = \begin{vmatrix} 1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0 \end{vmatrix} = \begin{vmatrix} 1 & -4 & 2 \\ 0 & 0 & -5 \\ 0 & 3 & 2 \end{vmatrix} = \begin{vmatrix} 1 & -4 & 2 \\ 0 & 0 & -5 \end{vmatrix} = 1 \cdot (-5) = -5
\]

An interchange of rows 2 and 3 reverses the sign of the determinant, so

\[
\det A = \begin{vmatrix} 1 & -4 & 2 \\ 0 & 3 & 2 \\ 0 & 0 & -5 \end{vmatrix} = -(1)(3)(-5) = 15
\]

A common use of Theorem 3(c) in hand calculations is to factor out a common multiple of one row of a matrix. For instance,

\[
\begin{vmatrix} * & * & * \\ 5k & -2k & 3k \\ * & * & * \end{vmatrix} = k \begin{vmatrix} * & * & * \\ 5 & -2 & 3 \\ * & * & * \end{vmatrix}
\]

where the starred entries are unchanged. We use this step in the next example.

EXAMPLE 2. Compute \(\det A \), where \(A = \begin{bmatrix} 2 & -8 & 6 & 8 \\ 3 & -9 & 5 & 10 \\ -3 & 0 & 1 & -2 \\ 1 & -4 & 0 & 6 \end{bmatrix} \).

Solution: To simplify the arithmetic, we want a 1 in the upper-left corner. We can interchange rows 1 and 4. Instead, we factor out 2 from the top row, and then proceed with row replacements in the first column:

\[
\det A = 2 \begin{vmatrix} 1 & -4 & 3 & 4 \\ 3 & -9 & 5 & 10 \\ -3 & 0 & 1 & -2 \\ 1 & -4 & 0 & 6 \end{vmatrix} = 2 \begin{vmatrix} 1 & -4 & 3 & 4 \\ 0 & 3 & -4 & -2 \\ 0 & -12 & 10 & 10 \\ 0 & 0 & -3 & 2 \end{vmatrix}
\]

Next, we could factor out another 2 from row 3 or use the 3 in the second column pivot. We choose the latter operation, adding 4 times row 2 to row 3:

\[
\det A = 2 \begin{vmatrix} 1 & -4 & 3 & 4 \\ 0 & 3 & -4 & -2 \\ 0 & 0 & -6 & 2 \\ 0 & 0 & -3 & 2 \end{vmatrix}
\]

Finally, adding \(-1/2\) times row 3 to row 4, and computing the "triangular" determinant, we find that

\[
\det A = 2 \begin{vmatrix} 1 & -4 & 3 & 4 \\ 0 & 3 & -4 & -2 \\ 0 & 0 & -6 & 2 \\ 0 & 0 & 0 & 1 \end{vmatrix} = 2 \cdot (1)(3)(-6)(1) = -36
\]
Suppose a square matrix \(A \) has been reduced to an echelon form \(U \) by row replacements and row interchanges. (This is always possible. See the row reduction algorithm in Section 1.2.) If there are \(r \) interchanges, then Theorem 3 shows that

\[
\det A = (-1)^r \det U
\]

Since \(U \) is in echelon form, it is triangular, and so \(\det U \) is the product of the diagonal entries \(u_{11}, \ldots, u_{nn} \). If \(A \) is invertible, the entries \(u_{ii} \) are all pivots (because \(A \sim I_n \) and the \(u_{ii} \) have not been scaled to 1’s). Otherwise, at least \(u_{nn} \) is zero, and the product \(u_{11} \cdots u_{nn} \) is zero. See Fig. 1. Thus

\[
det A = \begin{cases}
(-1)^r \cdot \text{(product of pivots in } U) & \text{when } A \text{ is invertible} \\
0 & \text{when } A \text{ is not invertible}
\end{cases}
\tag{1}
\]

It is interesting to note that although the echelon form \(U \) described above is not unique (because it is not completely row reduced), and the pivots are not unique, the product of the pivots is unique, except for a possible minus sign.

Formula (1) not only gives a concrete interpretation of \(\det A \) but also proves the main theorem of this section:

Theorem 4

A square matrix \(A \) is invertible if and only if \(\det A \neq 0 \).

Theorem 4 adds the statement "\(\det A \neq 0 \)" to the Invertible Matrix Theorem. A useful corollary is that \(\det A = 0 \) when the columns of \(A \) are linearly dependent. Also, \(\det A = 0 \) when the rows of \(A \) are linearly dependent. (Rows of \(A \) are columns of \(A^T \), and linearly dependent columns of \(A^T \) make \(A^T \) singular. When \(A^T \) is singular, so is \(A \), by the Invertible Matrix Theorem.) In practice, linear dependence is obvious when two columns or two rows are the same or a column or a row is zero.

Example 3 Compute \(\det A \), where \(A = \begin{bmatrix}
3 & -1 & 2 & -5 \\
0 & 5 & -3 & -6 \\
-6 & 7 & -7 & 4 \\
-5 & -8 & 0 & 9
\end{bmatrix} \)

Solution Add 2 times row 1 to row 3 to obtain

\[
\det A = \det \begin{bmatrix}
3 & -1 & 2 & -5 \\
0 & 5 & -3 & -6 \\
0 & 5 & -3 & -6 \\
-5 & -8 & 0 & 9
\end{bmatrix} = 0
\]

because the second and third rows of the second matrix are equal.

1. Most computer programs that compute \(\det A \) for a general matrix \(A \) use the method of formula (1) above.
2. It can be shown that evaluation of an \(n \times n \) determinant using row operations requires about \(2n^3/3 \) arithmetic operations. Any modern microcomputer can calculate a \(25 \times 25 \) determinant in a fraction of a second, since only about 10,000 operations are required.